# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn.functional as F from torch import nn from torchmetrics import Accuracy, MeanSquaredError from pytorch_lightning import LightningModule class ClassificationModel(LightningModule): def __init__(self, lr=0.01): super().__init__() self.lr = lr for i in range(3): setattr(self, f"layer_{i}", nn.Linear(32, 32)) setattr(self, f"layer_{i}a", torch.nn.ReLU()) setattr(self, "layer_end", nn.Linear(32, 3)) self.train_acc = Accuracy() self.valid_acc = Accuracy() self.test_acc = Accuracy() def forward(self, x): x = self.layer_0(x) x = self.layer_0a(x) x = self.layer_1(x) x = self.layer_1a(x) x = self.layer_2(x) x = self.layer_2a(x) x = self.layer_end(x) logits = F.softmax(x, dim=1) return logits def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=self.lr) return [optimizer], [] def training_step(self, batch, batch_idx): x, y = batch logits = self.forward(x) loss = F.cross_entropy(logits, y) self.log("train_loss", loss, prog_bar=True) self.log("train_acc", self.train_acc(logits, y), prog_bar=True) return {"loss": loss} def validation_step(self, batch, batch_idx): x, y = batch logits = self.forward(x) self.log("val_loss", F.cross_entropy(logits, y), prog_bar=False) self.log("val_acc", self.valid_acc(logits, y), prog_bar=True) def test_step(self, batch, batch_idx): x, y = batch logits = self.forward(x) self.log("test_loss", F.cross_entropy(logits, y), prog_bar=False) self.log("test_acc", self.test_acc(logits, y), prog_bar=True) def predict_step(self, batch, batch_idx): x, _ = batch return self.forward(x) class RegressionModel(LightningModule): def __init__(self): super().__init__() setattr(self, "layer_0", nn.Linear(16, 64)) setattr(self, "layer_0a", torch.nn.ReLU()) for i in range(1, 3): setattr(self, f"layer_{i}", nn.Linear(64, 64)) setattr(self, f"layer_{i}a", torch.nn.ReLU()) setattr(self, "layer_end", nn.Linear(64, 1)) self.train_mse = MeanSquaredError() self.valid_mse = MeanSquaredError() self.test_mse = MeanSquaredError() def forward(self, x): x = self.layer_0(x) x = self.layer_0a(x) x = self.layer_1(x) x = self.layer_1a(x) x = self.layer_2(x) x = self.layer_2a(x) x = self.layer_end(x) return x def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=0.01) return [optimizer], [] def training_step(self, batch, batch_idx): x, y = batch out = self.forward(x) loss = F.mse_loss(out, y) self.log("train_loss", loss, prog_bar=False) self.log("train_MSE", self.train_mse(out, y), prog_bar=True) return {"loss": loss} def validation_step(self, batch, batch_idx): x, y = batch out = self.forward(x) self.log("val_loss", F.mse_loss(out, y), prog_bar=False) self.log("val_MSE", self.valid_mse(out, y), prog_bar=True) def test_step(self, batch, batch_idx): x, y = batch out = self.forward(x) self.log("test_loss", F.mse_loss(out, y), prog_bar=False) self.log("test_MSE", self.test_mse(out, y), prog_bar=True)