Build and train PyTorch models and connect them to the ML lifecycle using Lightning App templates, without handling DIY infrastructure, cost management, scaling, and other headaches.
Go to file
William Falcon 0e82428eb9 updated lib name 2019-03-30 20:54:20 -04:00
notebooks initial commit 2019-03-30 20:50:32 -04:00
tests initial commit 2019-03-30 20:50:32 -04:00
LICENSE Initial commit 2019-03-30 20:45:58 -04:00
README.md initial commit 2019-03-30 20:50:32 -04:00
__init__.py initial commit 2019-03-30 20:50:32 -04:00
requirements.txt initial commit 2019-03-30 20:50:32 -04:00
setup.py initial commit 2019-03-30 20:50:32 -04:00

README.md

Pytorch-lightning

Seed for ML research

Usage

Add new model

  1. Create a new model under /models.
  2. Add model name to trainer_main
AVAILABLE_MODELS = {
    'model_1': ExampleModel1
}

Model methods that can be implemented

Method Purpose Input Output Required
forward() Forward pass model_in tuple with your data model_out tuple to be passed to loss Y
loss() calculate model loss model_out tuple from forward() A scalar Y
check_performance() run a full loop through val data to check for metrics dataloader, nb_tests metrics tuple to be tracked Y
tng_dataloader Computed option, used to feed tng data - Pytorch DataLoader subclass Y
val_dataloader Computed option, used to feed tng data - Pytorch DataLoader subclass Y
test_dataloader Computed option, used to feed tng data - Pytorch DataLoader subclass Y

Model lifecycle hooks

Use these hooks to customize functionality

Method Purpose Input Output Required
on_batch_start() called right before the batch starts - - N
on_batch_end() called right after the batch ends - - N
on_epoch_start() called right before the epoch starts - - N
on_epoch_end() called right afger the epoch ends - - N
on_pre_performance_check() called right before the performance check starts - - N
on_post_performance_check() called right after the batch starts - - N