updated lib name

This commit is contained in:
William Falcon 2019-03-30 20:54:20 -04:00
parent 8dfb8f9167
commit 0e82428eb9
20 changed files with 0 additions and 2052 deletions

View File

@ -1,167 +0,0 @@
import torch.nn as nn
import numpy as np
from test_tube import HyperOptArgumentParser
import torch
from torch.autograd import Variable
from sklearn.metrics import confusion_matrix, f1_score
from torch.nn import functional as F
class BiLSTMPack(nn.Module):
"""
Sample model to show how to define a template
"""
def __init__(self, hparams):
# init superclass
super(BiLSTMPack, self).__init__(hparams)
self.hidden = None
# trigger tag building
self.ner_tagset = {'O': 0, 'I-Bio': 1}
self.nb_tags = len(self.ner_tagset)
# build model
print('building model...')
if hparams.model_load_weights_path is None:
self.__build_model()
print('model built')
else:
self = BiLSTMPack.load(hparams.model_load_weights_path, hparams.on_gpu, hparams)
print('model loaded from: {}'.format(hparams.model_load_weights_path))
def __build_model(self):
"""
Layout model
:return:
"""
# design the number of final units
self.output_dim = self.hparams.nb_lstm_units
# when it's bidirectional our weights double
if self.hparams.bidirectional:
self.output_dim *= 2
# total number of words
total_words = len(self.tng_dataloader.dataset.words_token_to_idx)
# word embeddings
self.word_embedding = nn.Embedding(
num_embeddings=total_words + 1,
embedding_dim=self.hparams.embedding_dim,
padding_idx=0
)
# design the LSTM
self.lstm = nn.LSTM(
self.hparams.embedding_dim,
self.hparams.nb_lstm_units,
num_layers=self.hparams.nb_lstm_layers,
bidirectional=self.hparams.bidirectional,
dropout=self.hparams.drop_prob,
batch_first=True,
)
# map to tag space
self.fc_out = nn.Linear(self.output_dim, self.out_dim)
self.hidden_to_tag = nn.Linear(self.output_dim, self.nb_tags)
def init_hidden(self, batch_size):
# the weights are of the form (nb_layers * 2 if bidirectional, batch_size, nb_lstm_units)
mult = 2 if self.hparams.bidirectional else 1
hidden_a = torch.randn(self.hparams.nb_layers * mult, batch_size, self.nb_rnn_units)
hidden_b = torch.randn(self.hparams.nb_layers * mult, batch_size, self.nb_rnn_units)
if self.hparams.on_gpu:
hidden_a = hidden_a.cuda()
hidden_b = hidden_b.cuda()
hidden_a = Variable(hidden_a)
hidden_b = Variable(hidden_b)
return (hidden_a, hidden_b)
def forward(self, model_in):
# layout data (expand it, etc...)
# x = sequences
x, seq_lengths = model_in
batch_size, seq_len = x.size()
# reset RNN hidden state
self.hidden = self.init_hidden(batch_size)
# embed
x = self.word_embedding(x)
# run through rnn using packed sequences
x = torch.nn.utils.rnn.pack_padded_sequence(x, seq_lengths, batch_first=True)
x, self.hidden = self.lstm(x, self.hidden)
x, _ = torch.nn.utils.rnn.pad_packed_sequence(x, batch_first=True)
# if asked for only last state, use the h_n which is the same as out(t=n)
if not self.return_sequence:
# pull out hidden states
# h_n = (nb_directions * nb_layers, batch_size, emb_size)
nb_directions = 2 if self.bidirectional else 1
(h_n, _) = self.hidden
# reshape to make indexing easier
# forward = 0, backward = 1 (of nb_directions)
h_n = h_n.view(self.nb_layers, nb_directions, batch_size, self.nb_rnn_units)
# pull out last forward
forward_h_n = h_n[-1, 0, :, :]
x = forward_h_n
# if bidirectional, also pull out the last hidden of backward network
if self.bidirectional:
backward_h_n = h_n[-1, 1, :, :]
x = torch.cat([forward_h_n, backward_h_n], dim=1)
# project to tag space
x = x.contiguous()
x = x.view(-1, self.output_dim)
x = self.hidden_to_tag(x)
return x
def loss(self, model_out):
# cross entropy loss
logits, y = model_out
y, y_lens = y
# flatten y and logits
y = y.view(-1)
logits = logits.view(-1, self.nb_tags)
# calculate a mask to remove padding tokens
mask = (y >= 0).float()
# count how many tokens we have
num_tokens = int(torch.sum(mask).data[0])
# pick the correct values and mask out
logits = logits[range(logits.shape[0]), y] * mask
# compute the ce loss
ce_loss = -torch.sum(logits)/num_tokens
return ce_loss
def pull_out_last_embedding(self, x, seq_lengths, batch_size, on_gpu):
# grab only the last activations from the non-padded ouput
x_last = torch.zeros([batch_size, 1, x.size(-1)])
for i, seq_len in enumerate(seq_lengths):
x_last[i, :, :] = x[i, seq_len-1, :]
# put on gpu when requested
if on_gpu:
x_last = x_last.cuda()
# turn into torch var
x_last = Variable(x_last)
return x_last

View File

@ -1,203 +0,0 @@
import torch.nn as nn
import numpy as np
from research_lib.root_module.root_module import RootModule
from test_tube import HyperOptArgumentParser
from torchvision.datasets import MNIST
import torchvision.transforms as transforms
import torch
import torch.nn.functional as F
class ExampleModel1(RootModule):
"""
Sample model to show how to define a template
"""
def __init__(self, hparams):
# init superclass
super(ExampleModel1, self).__init__(hparams)
self.batch_size = hparams.batch_size
# build model
self.__build_model()
# ---------------------
# MODEL SETUP
# ---------------------
def __build_model(self):
"""
Layout model
:return:
"""
self.c_d1 = nn.Linear(in_features=self.hparams.in_features, out_features=self.hparams.hidden_dim)
self.c_d1_bn = nn.BatchNorm1d(self.hparams.hidden_dim)
self.c_d1_drop = nn.Dropout(self.hparams.drop_prob)
self.c_d2 = nn.Linear(in_features=self.hparams.hidden_dim, out_features=self.hparams.out_features)
# ---------------------
# TRAINING
# ---------------------
def forward(self, x):
x = self.c_d1(x)
x = F.tanh(x)
x = self.c_d1_bn(x)
x = self.c_d1_drop(x)
x = self.c_d2(x)
logits = F.log_softmax(x, dim=1)
return logits
def loss(self, labels, logits):
nll = F.nll_loss(logits, labels)
return nll
def training_step(self, data_batch):
"""
Called inside the training loop
:param data_batch:
:return:
"""
# forward pass
x, y = data_batch
x = x.view(x.size(0), -1)
y_hat = self.forward(x)
# calculate loss
loss_val = self.loss(y, y_hat)
tqdm_dic = {'jefe': 1}
return loss_val, tqdm_dic
def validation_step(self, data_batch):
"""
Called inside the validation loop
:param data_batch:
:return:
"""
x, y = data_batch
x = x.view(x.size(0), -1)
y_hat = self.forward(x)
loss_val = self.loss(y, y_hat)
# acc
labels_hat = torch.argmax(y_hat, dim=1)
val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)
output = {'y_hat': y_hat, 'val_loss': loss_val.item(), 'val_acc': val_acc}
return output
def validation_end(self, outputs):
"""
Called at the end of validation to aggregate outputs
:param outputs: list of individual outputs of each validation step
:return:
"""
val_loss_mean = 0
accs = []
for output in outputs:
val_loss_mean += output['val_loss']
accs.append(output['val_acc'])
val_loss_mean /= len(outputs)
tqdm_dic = {'val_loss': val_loss_mean, 'val_acc': np.mean(accs)}
return tqdm_dic
def update_tng_log_metrics(self, logs):
return logs
# ---------------------
# MODEL SAVING
# ---------------------
def get_save_dict(self):
checkpoint = {
'state_dict': self.state_dict(),
}
return checkpoint
def load_model_specific(self, checkpoint):
self.load_state_dict(checkpoint['state_dict'])
pass
# ---------------------
# TRAINING SETUP
# ---------------------
def configure_optimizers(self):
"""
return whatever optimizers we want here
:return: list of optimizers
"""
optimizer = self.choose_optimizer(self.hparams.optimizer_name, self.parameters(), {'lr': self.hparams.learning_rate}, 'optimizer')
self.optimizers = [optimizer]
return self.optimizers
def __dataloader(self, train):
# init data generators
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))])
dataset = MNIST(root=self.hparams.data_root, train=train, transform=transform, download=True)
loader = torch.utils.data.DataLoader(
dataset=dataset,
batch_size=self.hparams.batch_size,
shuffle=True
)
return loader
@property
def tng_dataloader(self):
if self._tng_dataloader is None:
try:
self._tng_dataloader = self.__dataloader(train=True)
except Exception as e:
print(e)
raise e
return self._tng_dataloader
@property
def val_dataloader(self):
if self._val_dataloader is None:
try:
self._val_dataloader = self.__dataloader(train=False)
except Exception as e:
print(e)
raise e
return self._val_dataloader
@property
def test_dataloader(self):
if self._test_dataloader is None:
try:
self._test_dataloader = self.__dataloader(train=False)
except Exception as e:
print(e)
raise e
return self._test_dataloader
@staticmethod
def add_model_specific_args(parent_parser):
parser = HyperOptArgumentParser(strategy=parent_parser.strategy, parents=[parent_parser])
# param overwrites
# parser.set_defaults(gradient_clip=5.0)
# network params
parser.opt_list('--drop_prob', default=0.2, options=[0.2, 0.5], type=float, tunable=False)
parser.add_argument('--in_features', default=28*28)
parser.add_argument('--hidden_dim', default=500)
parser.add_argument('--out_features', default=10)
# data
parser.add_argument('--data_root', default='/Users/williamfalcon/Developer/personal/research_lib/research_proj/datasets/mnist', type=str)
# training params (opt)
parser.opt_list('--learning_rate', default=0.001, type=float, options=[0.0001, 0.0005, 0.001, 0.005],
tunable=False)
parser.opt_list('--batch_size', default=256, type=int, options=[32, 64, 128, 256], tunable=False)
parser.opt_list('--optimizer_name', default='adam', type=str, options=['adam'], tunable=False)
return parser

View File

@ -1,407 +0,0 @@
import torch
import tqdm
import numpy as np
from research_lib.root_module.memory import get_gpu_memory_map
import traceback
from research_lib.root_module.model_saving import TrainerIO
from torch.optim.lr_scheduler import MultiStepLR
class Trainer(TrainerIO):
def __init__(self,
experiment,
on_gpu,
cluster, enable_tqdm,
overfit_pct,
track_grad_norm,
fast_dev_run,
check_val_every_n_epoch,
accumulate_grad_batches,
process_position, current_gpu_name,
checkpoint_callback, early_stop_callback,
enable_early_stop, max_nb_epochs, min_nb_epochs,
train_percent_check, val_percent_check, test_percent_check, val_check_interval,
log_save_interval, add_log_row_interval,
lr_scheduler_milestones,
nb_sanity_val_steps=5):
# Transfer params
self.check_val_every_n_epoch = check_val_every_n_epoch
self.enable_early_stop = enable_early_stop
self.track_grad_norm = track_grad_norm
self.fast_dev_run = fast_dev_run
self.on_gpu = on_gpu
self.enable_tqdm = enable_tqdm
self.experiment = experiment
self.exp_save_path = experiment.get_data_path(experiment.name, experiment.version)
self.cluster = cluster
self.process_position = process_position
self.current_gpu_name = current_gpu_name
self.checkpoint_callback = checkpoint_callback
self.checkpoint_callback.save_function = self.save_checkpoint
self.early_stop = early_stop_callback
self.model = None
self.max_nb_epochs = max_nb_epochs
self.accumulate_grad_batches = accumulate_grad_batches
self.early_stop_callback = early_stop_callback
self.min_nb_epochs = min_nb_epochs
self.nb_sanity_val_steps = nb_sanity_val_steps
self.lr_scheduler_milestones = [] if lr_scheduler_milestones is None else [int(x.strip()) for x in lr_scheduler_milestones.split(',')]
self.lr_schedulers = []
# training state
self.optimizers = None
self.prog_bar = None
self.global_step = 0
self.current_epoch = 0
self.total_batches = 0
# logging
self.log_save_interval = log_save_interval
self.val_check_interval = val_check_interval
self.add_log_row_interval = add_log_row_interval
# dataloaders
self.tng_dataloader = None
self.test_dataloader = None
self.val_dataloader = None
# how much of the data to use
self.__determine_data_use_amount(train_percent_check, val_percent_check, test_percent_check, overfit_pct)
print('gpu available: {}, used: {}'.format(torch.cuda.is_available(), self.on_gpu))
def __determine_data_use_amount(self, train_percent_check, val_percent_check, test_percent_check, overfit_pct):
"""
Use less data for debugging purposes
"""
self.train_percent_check = train_percent_check
self.val_percent_check = val_percent_check
self.test_percent_check = test_percent_check
if overfit_pct > 0:
self.train_percent_check = overfit_pct
self.val_percent_check = overfit_pct
self.test_percent_check = overfit_pct
def __is_function_implemented(self, f_name):
f_op = getattr(self, f_name, None)
return callable(f_op)
@property
def __tng_tqdm_dic(self):
tqdm_dic = {
'tng_loss': '{0:.3f}'.format(self.avg_loss),
'gpu': '{}'.format(self.current_gpu_name),
'v_nb': '{}'.format(self.experiment.version),
'epoch': '{}'.format(self.current_epoch),
'batch_nb':'{}'.format(self.batch_nb),
}
tqdm_dic.update(self.tqdm_metrics)
return tqdm_dic
def __layout_bookeeping(self):
# training bookeeping
self.total_batch_nb = 0
self.running_loss = []
self.avg_loss = 0
self.batch_nb = 0
self.tqdm_metrics = {}
# determine number of training batches
nb_tng_batches = self.model.nb_batches(self.tng_dataloader)
self.nb_tng_batches = int(nb_tng_batches * self.train_percent_check)
# determine number of validation batches
nb_val_batches = self.model.nb_batches(self.val_dataloader)
nb_val_batches = int(nb_val_batches * self.val_percent_check)
nb_val_batches = max(1, nb_val_batches)
self.nb_val_batches = nb_val_batches
# determine number of test batches
nb_test_batches = self.model.nb_batches(self.test_dataloader)
self.nb_test_batches = int(nb_test_batches * self.test_percent_check)
# determine when to check validation
self.val_check_batch = int(nb_tng_batches * self.val_check_interval)
def __add_tqdm_metrics(self, metrics):
for k, v in metrics.items():
self.tqdm_metrics[k] = v
def validate(self, model, dataloader, max_batches):
"""
Run validation code
:param model: PT model
:param dataloader: PT dataloader
:param max_batches: Scalar
:return:
"""
print('validating...')
# enable eval mode
model.zero_grad()
model.eval()
# disable gradients to save memory
torch.set_grad_enabled(False)
# bookkeeping
outputs = []
# run training
for i, data_batch in enumerate(dataloader):
if data_batch is None:
continue
# stop short when on fast dev run
if max_batches is not None and i >= max_batches:
break
# -----------------
# RUN VALIDATION STEP
# -----------------
output = model.validation_step(data_batch)
outputs.append(output)
# batch done
if self.enable_tqdm and self.prog_bar is not None:
self.prog_bar.update(1)
# give model a chance to do something with the outputs
val_results = model.validation_end(outputs)
# enable train mode again
model.train()
# enable gradients to save memory
torch.set_grad_enabled(True)
return val_results
def __get_dataloaders(self, model):
"""
Dataloaders are provided by the model
:param model:
:return:
"""
self.tng_dataloader = model.tng_dataloader
self.test_dataloader = model.test_dataloader
self.val_dataloader = model.val_dataloader
# -----------------------------
# MODEL TRAINING
# -----------------------------
def fit(self, model):
self.model = model
# transfer data loaders from model
self.__get_dataloaders(model)
# init training constants
self.__layout_bookeeping()
# CHOOSE OPTIMIZER
# filter out the weights that were done on gpu so we can load on good old cpus
self.optimizers = model.configure_optimizers()
# add lr schedulers
if self.lr_scheduler_milestones is not None:
for optimizer in self.optimizers:
scheduler = MultiStepLR(optimizer, self.lr_scheduler_milestones)
self.lr_schedulers.append(scheduler)
# print model summary
model.summarize()
# put on gpu if needed
if self.on_gpu:
model = model.cuda()
# run tiny validation to make sure program won't crash during val
_ = self.validate(model, self.val_dataloader, max_batches=self.nb_sanity_val_steps)
# save exp to get started
self.experiment.save()
# enable cluster checkpointing
self.enable_auto_hpc_walltime_manager()
# ---------------------------
# CORE TRAINING LOOP
# ---------------------------
self.__train()
def __train(self):
# run all epochs
for epoch_nb in range(self.current_epoch, self.max_nb_epochs):
# update the lr scheduler
for lr_scheduler in self.lr_schedulers:
lr_scheduler.step()
self.model.current_epoch = epoch_nb
# hook
if self.__is_function_implemented('on_epoch_start'):
self.model.on_epoch_start()
self.current_epoch = epoch_nb
self.total_batches = self.nb_tng_batches + self.nb_val_batches
self.batch_loss_value = 0 # accumulated grads
# init progbar when requested
if self.enable_tqdm:
self.prog_bar = tqdm.tqdm(range(self.total_batches), position=self.process_position)
for batch_nb, data_batch in enumerate(self.tng_dataloader):
self.batch_nb = batch_nb
self.global_step += 1
self.model.global_step = self.global_step
# stop when the flag is changed or we've gone past the amount requested in the batches
self.total_batch_nb += 1
met_batch_limit = batch_nb > self.nb_tng_batches
if met_batch_limit:
break
# ---------------
# RUN TRAIN STEP
# ---------------
self.__run_tng_batch(data_batch)
# ---------------
# RUN VAL STEP
# ---------------
is_val_check_batch = (batch_nb + 1) % self.val_check_batch == 0
if self.fast_dev_run or is_val_check_batch:
self.__run_validation()
# when batch should be saved
if (batch_nb + 1) % self.log_save_interval == 0:
self.experiment.save()
# when metrics should be logged
if batch_nb % self.add_log_row_interval == 0:
# count items in memory
# nb_params, nb_tensors = count_mem_items()
metrics = self.model.update_tng_log_metrics(self.__tng_tqdm_dic)
# add gpu memory
if self.on_gpu:
mem_map = get_gpu_memory_map()
metrics.update(mem_map)
# add norms
if self.track_grad_norm > 0:
grad_norm_dic = self.model.grad_norm(self.track_grad_norm)
metrics.update(grad_norm_dic)
# log metrics
self.experiment.log(metrics)
self.experiment.save()
# hook
if self.__is_function_implemented('on_batch_end'):
self.model.on_batch_end()
# hook
if self.__is_function_implemented('on_epoch_end'):
self.model.on_epoch_end()
# early stopping
if self.enable_early_stop:
should_stop = self.early_stop_callback.on_epoch_end(epoch=epoch_nb, logs=self.__tng_tqdm_dic)
met_min_epochs = epoch_nb > self.min_nb_epochs
# stop training
stop = should_stop and met_min_epochs
if stop:
return
def __run_tng_batch(self, data_batch):
if data_batch is None:
return
# hook
if self.__is_function_implemented('on_batch_start'):
self.model.on_batch_start()
if self.enable_tqdm:
self.prog_bar.update(1)
# forward pass
# return a scalar value and a dic with tqdm metrics
loss, model_specific_tqdm_metrics_dic = self.model.training_step(data_batch)
self.__add_tqdm_metrics(model_specific_tqdm_metrics_dic)
# backward pass
loss.backward()
self.batch_loss_value += loss.item()
# gradient update with accumulated gradients
if (self.batch_nb + 1) % self.accumulate_grad_batches == 0:
# update gradients across all optimizers
for optimizer in self.optimizers:
optimizer.step()
# clear gradients
optimizer.zero_grad()
# queuing loss across batches blows it up proportionally... divide out the number accumulated
self.batch_loss_value = self.batch_loss_value / self.accumulate_grad_batches
# track loss
self.running_loss.append(self.batch_loss_value)
self.batch_loss_value = 0
self.avg_loss = np.mean(self.running_loss[-100:])
# update progbar
if self.enable_tqdm:
# add model specific metrics
tqdm_metrics = self.__tng_tqdm_dic
self.prog_bar.set_postfix(**tqdm_metrics)
# activate batch end hook
if self.__is_function_implemented('on_batch_end'):
self.model.on_batch_end()
def __run_validation(self):
# decide if can check epochs
can_check_epoch = (self.current_epoch + 1) % self.check_val_every_n_epoch == 0
if self.fast_dev_run:
print('skipping to check performance bc of --fast_dev_run')
elif not can_check_epoch:
return
try:
# hook
if self.__is_function_implemented('on_pre_performance_check'):
self.model.on_pre_performance_check()
# use full val set on end of epoch
# use a small portion otherwise
max_batches = None if not self.fast_dev_run else 1
model_specific_tqdm_metrics_dic = self.validate(
self.model,
self.val_dataloader,
max_batches
)
self.__add_tqdm_metrics(model_specific_tqdm_metrics_dic)
# hook
if self.__is_function_implemented('on_post_performance_check'):
self.model.on_post_performance_check()
except Exception as e:
print(e)
print(traceback.print_exc())
if self.enable_tqdm:
# add model specific metrics
tqdm_metrics = self.__tng_tqdm_dic
self.prog_bar.set_postfix(**tqdm_metrics)
# model checkpointing
print('save callback...')
self.checkpoint_callback.on_epoch_end(epoch=self.current_epoch, logs=self.__tng_tqdm_dic)

View File

@ -1,40 +0,0 @@
import numpy as np
from torch import nn
"""
Module to describe gradients
"""
class GradInformation(nn.Module):
def grad_norm(self, norm_type):
results = {}
total_norm = 0
for i, p in enumerate(self.parameters()):
if p.requires_grad:
try:
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm ** norm_type
norm = param_norm ** (1 / norm_type)
results['grad_{}_norm_{}'.format(norm_type, i)] = round(norm.data.cpu().numpy().flatten()[0], 3)
except Exception as e:
# this param had no grad
pass
total_norm = total_norm ** (1. / norm_type)
results['grad_{}_norm_total'.format(norm_type)] = round(total_norm.data.cpu().numpy().flatten()[0], 3)
return results
def describe_grads(self):
for p in self.parameters():
g = p.grad.data.numpy().flatten()
print(np.max(g), np.min(g), np.mean(g))
def describe_params(self):
for p in self.parameters():
g = p.data.numpy().flatten()
print(np.max(g), np.min(g), np.mean(g))

View File

@ -1,20 +0,0 @@
import torch
class ModelHooks(torch.nn.Module):
def on_batch_start(self):
pass
def on_batch_end(self):
pass
def on_epoch_start(self):
pass
def on_epoch_end(self):
pass
def on_pre_performance_check(self):
pass
def on_post_performance_check(self):
pass

View File

@ -1,180 +0,0 @@
import torch
import gc
import subprocess
import numpy as np
import pandas as pd
'''
Generates a summary of a model's layers and dimensionality
'''
class ModelSummary(object):
def __init__(self, model):
'''
Generates summaries of model layers and dimensions.
'''
self.model = model
self.in_sizes = []
self.out_sizes = []
self.summarize()
def __str__(self):
return self.summary.__str__()
def __repr__(self):
return self.summary.__str__()
def get_variable_sizes(self):
'''Run sample input through each layer to get output sizes'''
mods = list(self.model.modules())
in_sizes = []
out_sizes = []
input_ = self.example_input_array
for i in range(1, len(mods)):
m = mods[i]
if type(input_) is list or type(input_) is tuple:
out = m(*input_)
else:
out = m(input_)
if type(input_) is tuple or type(input_) is list:
in_size = []
for x in input_:
if type(x) is list:
in_size.append(len(x))
else:
in_size.append(x.size())
else:
in_size = np.array(input_.size())
in_sizes.append(in_size)
if type(out) is tuple or type(out) is list:
out_size = np.asarray([x.size() for x in out])
else:
out_size = np.array(out.size())
out_sizes.append(out_size)
input_ = out
self.in_sizes = in_sizes
self.out_sizes = out_sizes
return
def get_layer_names(self):
'''Collect Layer Names'''
mods = list(self.model.named_modules())
names = []
layers = []
for m in mods[1:]:
names += [m[0]]
layers += [str(m[1].__class__)]
layer_types = [x.split('.')[-1][:-2] for x in layers]
self.layer_names = names
self.layer_types = layer_types
return
def get_parameter_sizes(self):
'''Get sizes of all parameters in `model`'''
mods = list(self.model.modules())
sizes = []
for i in range(1,len(mods)):
m = mods[i]
p = list(m.parameters())
modsz = []
for j in range(len(p)):
modsz.append(np.array(p[j].size()))
sizes.append(modsz)
self.param_sizes = sizes
return
def get_parameter_nums(self):
'''Get number of parameters in each layer'''
param_nums = []
for mod in self.param_sizes:
all_params = 0
for p in mod:
all_params += np.prod(p)
param_nums.append(all_params)
self.param_nums = param_nums
return
def make_summary(self):
'''
Makes a summary listing with:
Layer Name, Layer Type, Input Size, Output Size, Number of Parameters
'''
df = pd.DataFrame( np.zeros( (len(self.layer_names), 3) ) )
df.columns = ['Name', 'Type', 'Params']
df['Name'] = self.layer_names
df['Type'] = self.layer_types
df['Params'] = self.param_nums
self.summary = df
return
def summarize(self):
self.get_layer_names()
self.get_parameter_sizes()
self.get_parameter_nums()
self.make_summary()
def print_mem_stack():
for obj in gc.get_objects():
try:
if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)):
print(type(obj), obj.size())
except Exception as e:
pass
def count_mem_items():
nb_params = 0
nb_tensors = 0
for obj in gc.get_objects():
try:
if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)):
obj_type = str(type(obj))
if 'parameter' in obj_type:
nb_params += 1
else:
nb_tensors += 1
except Exception as e:
pass
return nb_params, nb_tensors
def get_gpu_memory_map():
"""Get the current gpu usage.
Returns
-------
usage: dict
Keys are device ids as integers.
Values are memory usage as integers in MB.
"""
result = subprocess.check_output(
[
'nvidia-smi', '--query-gpu=memory.used',
'--format=csv,nounits,noheader'
], encoding='utf-8')
# Convert lines into a dictionary
gpu_memory = [int(x) for x in result.strip().split('\n')]
gpu_memory_map = {}
for k, v in zip(range(len(gpu_memory)), gpu_memory):
k = f'gpu_{k}'
gpu_memory_map[k] = v
return gpu_memory_map

View File

@ -1,168 +0,0 @@
import torch
import os
import re
class ModelIO(object):
def load_model_specific(self, checkpoint):
"""
Do something with the checkpoint
:param checkpoint:
:return:
"""
raise NotImplementedError
def get_save_dict(self):
"""
Return specific things for the model
:return:
"""
raise NotImplementedError
class TrainerIO(object):
# --------------------
# MODEL SAVE CHECKPOINT
# --------------------
def save_checkpoint(self, filepath):
checkpoint = self.dump_checkpoint()
# do the actual save
torch.save(checkpoint, filepath)
def dump_checkpoint(self):
checkpoint = {
'epoch': self.current_epoch,
'checkpoint_callback_best': self.checkpoint_callback.best,
'early_stop_callback_wait': self.early_stop_callback.wait,
'early_stop_callback_patience': self.early_stop_callback.patience,
'global_step': self.global_step
}
optimizer_states = []
for i, optimizer in enumerate(self.optimizers):
optimizer_states.append(optimizer.state_dict())
checkpoint['optimizer_states'] = optimizer_states
# request what to save from the model
checkpoint_dict = self.model.get_save_dict()
# merge trainer and model saving items
checkpoint.update(checkpoint_dict)
return checkpoint
# --------------------
# HPC IO
# --------------------
def enable_auto_hpc_walltime_manager(self):
if self.cluster is None:
return
# allow test tube to handle model check pointing automatically
self.cluster.set_checkpoint_save_function(
self.hpc_save,
kwargs={
'folderpath': self.checkpoint_callback.filepath,
'experiment': self.experiment
}
)
self.cluster.set_checkpoint_load_function(
self.hpc_load,
kwargs={
'folderpath': self.checkpoint_callback.filepath,
'on_gpu': self.on_gpu
}
)
def restore_training_state(self, checkpoint):
"""
Restore trainer state.
Model will get its change to update
:param checkpoint:
:return:
"""
self.checkpoint_callback.best = checkpoint['checkpoint_callback_best']
self.early_stop_callback.wait = checkpoint['early_stop_callback_wait']
self.early_stop_callback.patience = checkpoint['early_stop_callback_patience']
self.global_step = checkpoint['global_step']
# restore the optimizers
optimizer_states = checkpoint['optimizer_states']
for optimizer, opt_state in zip(self.optimizers, optimizer_states):
optimizer.load_state_dict(opt_state)
# ----------------------------------
# PRIVATE OPS
# ----------------------------------
def hpc_save(self, folderpath, experiment):
# save exp to make sure we get all the metrics
experiment.save()
ckpt_number = self.max_ckpt_in_folder(folderpath) + 1
if not os.path.exists(folderpath):
os.makedirs(folderpath, exist_ok=True)
filepath = '{}/hpc_ckpt_{}.ckpt'.format(folderpath, ckpt_number)
# request what to save from the model
checkpoint_dict = self.dump_checkpoint()
# do the actual save
torch.save(checkpoint_dict, filepath)
def hpc_load(self, folderpath, on_gpu):
filepath = '{}/hpc_ckpt_{}.ckpt'.format(folderpath, self.max_ckpt_in_folder(folderpath))
if on_gpu:
checkpoint = torch.load(filepath)
else:
checkpoint = torch.load(filepath, map_location=lambda storage, loc: storage)
# load training state
self.restore_training_state(checkpoint)
# load model state
self.model.load_model_specific(checkpoint)
def max_ckpt_in_folder(self, path):
files = os.listdir(path)
ckpt_vs = []
for name in files:
name = name.split('ckpt_')[-1]
name = re.sub('[^0-9]', '', name)
ckpt_vs.append(int(name))
return max(ckpt_vs)
def load_hparams_from_tags_csv(tags_csv):
from argparse import Namespace
import pandas as pd
tags_df = pd.read_csv(tags_csv)
dic = tags_df.to_dict(orient='records')
ns_dict = {row['key']: convert(row['value']) for row in dic}
ns = Namespace(**ns_dict)
return ns
def convert(val):
constructors = [int, float, str]
if type(val) is str:
if val.lower() == 'true':
return True
if val.lower() == 'false':
return False
for c in constructors:
try:
return c(val)
except ValueError:
pass
return val

View File

@ -1,22 +0,0 @@
from torch import nn
from torch import optim
class OptimizerConfig(nn.Module):
def choose_optimizer(self, optimizer, params, optimizer_params, opt_name_key):
if optimizer == 'adam':
optimizer = optim.Adam(params, **optimizer_params)
if optimizer == 'sparse_adam':
optimizer = optim.SparseAdam(params, **optimizer_params)
if optimizer == 'sgd':
optimizer = optim.SGD(params, **optimizer_params)
if optimizer == 'adadelta':
optimizer = optim.Adadelta(params, **optimizer_params)
# transfer opt state if loaded
if opt_name_key in self.loaded_optimizer_states_dict:
state = self.loaded_optimizer_states_dict[opt_name_key]
optimizer.load_state_dict(state)
return optimizer

View File

@ -1,167 +0,0 @@
import os
import torch
import math
from research_lib.root_module.memory import ModelSummary
from research_lib.root_module.grads import GradInformation
from research_lib.root_module.model_saving import ModelIO, load_hparams_from_tags_csv
from research_lib.root_module.optimization import OptimizerConfig
from research_lib.root_module.hooks import ModelHooks
class RootModule(GradInformation, ModelIO, OptimizerConfig, ModelHooks):
def __init__(self, hparams):
super(RootModule, self).__init__()
self.hparams = hparams
self.on_gpu = hparams.on_gpu
self.dtype = torch.FloatTensor
self.exp_save_path = None
self.current_epoch = 0
self.global_step = 0
self.loaded_optimizer_states_dict = {}
self.fast_dev_run = hparams.fast_dev_run
self.overfit = hparams.overfit
self.gradient_clip = hparams.gradient_clip
self.num = 2
# computed vars for the dataloaders
self._tng_dataloader = None
self._val_dataloader = None
self._test_dataloader = None
if self.on_gpu:
print('running on gpu...')
self.dtype = torch.cuda.FloatTensor
torch.set_default_tensor_type('torch.cuda.FloatTensor')
def forward(self, *args, **kwargs):
"""
Expand model in into whatever you need.
Also need to return the target
:param x:
:return:
"""
raise NotImplementedError
def validation_step(self, data_batch):
"""
return whatever outputs will need to be aggregated in validation_end
:param data_batch:
:return:
"""
raise NotImplementedError
def validation_end(self, outputs):
"""
Outputs has the appended output after each validation step
:param outputs:
:return: dic_with_metrics for tqdm
"""
raise NotImplementedError
def training_step(self, data_batch):
"""
return loss, dict with metrics for tqdm
:param data_batch:
:return:
"""
raise NotImplementedError
def configure_optimizers(self):
"""
Return array of optimizers
:return:
"""
raise NotImplementedError
def update_tng_log_metrics(self, logs):
"""
Chance to update metrics to be logged for training step.
For example, add music, images, etc... to log
:param logs:
:return:
"""
raise NotImplementedError
def loss(self, *args, **kwargs):
"""
Expand model_out into your components
:param model_out:
:return:
"""
raise NotImplementedError
def summarize(self):
model_summary = ModelSummary(self)
print(model_summary)
def nb_batches(self, dataloader):
a = math.ceil(float(len(dataloader.dataset) / self.batch_size))
return int(a)
def freeze(self):
for param in self.parameters():
param.requires_grad = False
def unfreeze(self):
for param in self.parameters():
param.requires_grad = True
@property
def tng_dataloader(self):
"""
Implement a function to load an h5py of this data
:return:
"""
raise NotImplementedError
@property
def test_dataloader(self):
"""
Implement a function to load an h5py of this data
:return:
"""
raise NotImplementedError
@property
def val_dataloader(self):
"""
Implement a function to load an h5py of this data
:return:
"""
raise NotImplementedError
@staticmethod
def get_process_position(gpus):
try:
current_gpu = os.environ["CUDA_VISIBLE_DEVICES"]
gpu_ids = gpus.split(';')
process_position = gpu_ids.index(current_gpu)
return process_position, current_gpu
except Exception as e:
return 0, 0
@classmethod
def load_from_metrics(cls, weights_path, tags_csv, on_gpu):
"""
Primary way of loading model from csv weights path
:param weights_path:
:param tags_csv:
:param on_gpu:
:return:
"""
hparams = load_hparams_from_tags_csv(tags_csv)
hparams.__setattr__('on_gpu', on_gpu)
if on_gpu:
checkpoint = torch.load(weights_path)
else:
checkpoint = torch.load(weights_path, map_location=lambda storage, loc: storage)
model = cls(hparams)
# allow model to load
model.load_model_specific(checkpoint)
model.load_state_dict(checkpoint['state_dict'], strict=False)
return model

View File

@ -1,215 +0,0 @@
import os
import sys
import torch
import numpy as np
from test_tube import HyperOptArgumentParser, Experiment, SlurmCluster
from research_lib.models.trainer import Trainer
from research_lib.utils.arg_parse import add_default_args
from time import sleep
from research_lib.utils.pt_callbacks import EarlyStopping, ModelCheckpoint
SEED = 2334
torch.manual_seed(SEED)
np.random.seed(SEED)
# ---------------------
# DEFINE MODEL HERE
# ---------------------
from research_lib.models.sample_model_template.model_template import ExampleModel1
# ---------------------
AVAILABLE_MODELS = {
'model_1': ExampleModel1
}
"""
Allows training by using command line arguments
Run by:
# TYPE YOUR RUN COMMAND HERE
"""
def main_local(hparams):
main(hparams, None, None)
def main(hparams, cluster, results_dict):
"""
Main training routine specific for this project
:param hparams:
:return:
"""
on_gpu = torch.cuda.is_available()
if hparams.disable_cuda:
on_gpu = False
device = 'cuda' if on_gpu else 'cpu'
hparams.__setattr__('device', device)
hparams.__setattr__('on_gpu', on_gpu)
hparams.__setattr__('nb_gpus', torch.cuda.device_count())
hparams.__setattr__('inference_mode', hparams.model_load_weights_path is not None)
# delay each training start to not overwrite logs
process_position, current_gpu = TRAINING_MODEL.get_process_position(hparams.gpus)
sleep(process_position + 1)
# init experiment
exp = Experiment(
name=hparams.tt_name,
debug=hparams.debug,
save_dir=hparams.tt_save_path,
version=hparams.hpc_exp_number,
autosave=False,
description=hparams.tt_description
)
exp.argparse(hparams)
exp.save()
# build model
print('loading model...')
model = TRAINING_MODEL(hparams)
print('model built')
# callbacks
early_stop = EarlyStopping(
monitor=hparams.early_stop_metric,
patience=hparams.early_stop_patience,
verbose=True,
mode=hparams.early_stop_mode
)
model_save_path = '{}/{}/{}'.format(hparams.model_save_path, exp.name, exp.version)
checkpoint = ModelCheckpoint(
filepath=model_save_path,
save_function=None,
save_best_only=True,
verbose=True,
monitor=hparams.model_save_monitor_value,
mode=hparams.model_save_monitor_mode
)
# configure trainer
trainer = Trainer(
experiment=exp,
on_gpu=on_gpu,
cluster=cluster,
enable_tqdm=hparams.enable_tqdm,
overfit_pct=hparams.overfit,
track_grad_norm=hparams.track_grad_norm,
fast_dev_run=hparams.fast_dev_run,
check_val_every_n_epoch=hparams.check_val_every_n_epoch,
accumulate_grad_batches=hparams.accumulate_grad_batches,
process_position=process_position,
current_gpu_name=current_gpu,
checkpoint_callback=checkpoint,
early_stop_callback=early_stop,
enable_early_stop=hparams.enable_early_stop,
max_nb_epochs=hparams.max_nb_epochs,
min_nb_epochs=hparams.min_nb_epochs,
train_percent_check=hparams.train_percent_check,
val_percent_check=hparams.val_percent_check,
test_percent_check=hparams.test_percent_check,
val_check_interval=hparams.val_check_interval,
log_save_interval=hparams.log_save_interval,
add_log_row_interval=hparams.add_log_row_interval,
lr_scheduler_milestones=hparams.lr_scheduler_milestones
)
# train model
trainer.fit(model)
def get_default_parser(strategy, root_dir):
possible_model_names = list(AVAILABLE_MODELS.keys())
parser = HyperOptArgumentParser(strategy=strategy, add_help=False)
add_default_args(parser, root_dir, possible_model_names, SEED)
return parser
def get_model_name(args):
for i, arg in enumerate(args):
if 'model_name' in arg:
return args[i+1]
def optimize_on_cluster(hyperparams):
# enable cluster training
cluster = SlurmCluster(
hyperparam_optimizer=hyperparams,
log_path=hyperparams.tt_save_path,
test_tube_exp_name=hyperparams.tt_name
)
# email for cluster coms
cluster.notify_job_status(email='add_email_here', on_done=True, on_fail=True)
# configure cluster
cluster.per_experiment_nb_gpus = hyperparams.per_experiment_nb_gpus
cluster.job_time = '48:00:00'
cluster.gpu_type = '1080ti'
cluster.memory_mb_per_node = 48000
# any modules for code to run in env
cluster.add_command('source activate research_lib')
# name of exp
job_display_name = hyperparams.tt_name.split('_')[0]
job_display_name = job_display_name[0:3]
# run hopt
print('submitting jobs...')
cluster.optimize_parallel_cluster_gpu(
main,
nb_trials=hyperparams.nb_hopt_trials,
job_name=job_display_name
)
if __name__ == '__main__':
model_name = get_model_name(sys.argv)
# use default args
root_dir = os.path.split(os.path.dirname(sys.modules['__main__'].__file__))[0]
parent_parser = get_default_parser(strategy='random_search', root_dir=root_dir)
# allow model to overwrite or extend args
TRAINING_MODEL = AVAILABLE_MODELS[model_name]
parser = TRAINING_MODEL.add_model_specific_args(parent_parser)
parser.json_config('-c', '--config', default=root_dir + '/run_configs/local.json')
hyperparams = parser.parse_args()
# format GPU layout
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
gpu_ids = hyperparams.gpus.split(';')
# RUN TRAINING
if hyperparams.on_cluster:
print('RUNNING ON SLURM CLUSTER')
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(gpu_ids)
optimize_on_cluster(hyperparams)
elif hyperparams.single_run_gpu:
print(f'RUNNING 1 TRIAL ON GPU. gpu: {gpu_ids[0]}')
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_ids[0]
main(hyperparams, None, None)
elif hyperparams.local or hyperparams.single_run:
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
print('RUNNING LOCALLY')
main(hyperparams, None, None)
else:
print(f'RUNNING MULTI GPU. GPU ids: {gpu_ids}')
hyperparams.optimize_parallel_gpu(
main_local,
gpu_ids=gpu_ids,
nb_trials=hyperparams.nb_hopt_trials,
nb_workers=len(gpu_ids)
)

View File

@ -1,67 +0,0 @@
def add_default_args(parser, root_dir, possible_model_names, rand_seed):
# tng, test, val check intervals
parser.add_argument('--eval_test_set', dest='eval_test_set', action='store_true', help='true = run test set also')
parser.add_argument('--check_val_every_n_epoch', default=1, type=int, help='check val every n epochs')
parser.opt_list('--accumulate_grad_batches', default=1, type=int, tunable=False,
help='accumulates gradients k times before applying update. Simulates huge batch size')
parser.add_argument('--max_nb_epochs', default=200, type=int, help='cap epochs')
parser.add_argument('--min_nb_epochs', default=2, type=int, help='min epochs')
parser.add_argument('--train_percent_check', default=1.0, type=float, help='how much of tng set to check')
parser.add_argument('--val_percent_check', default=1.0, type=float, help='how much of val set to check')
parser.add_argument('--test_percent_check', default=1.0, type=float, help='how much of test set to check')
parser.add_argument('--val_check_interval', default=0.95, type=float, help='how much within 1 epoch to check val')
parser.add_argument('--log_save_interval', default=100, type=int, help='how many batches between log saves')
parser.add_argument('--add_log_row_interval', default=100, type=int, help='add log every k batches')
# early stopping
parser.add_argument('--disable_early_stop', dest='enable_early_stop', action='store_false')
parser.add_argument('--early_stop_metric', default='val_acc', type=str)
parser.add_argument('--early_stop_mode', default='min', type=str)
parser.add_argument('--early_stop_patience', default=3, type=int, help='number of epochs until stop')
# gradient handling
parser.add_argument('--gradient_clip', default=-1, type=int)
parser.add_argument('--track_grad_norm', default=-1, type=int, help='if > 0, will track this grad norm')
# model saving
parser.add_argument('--model_save_path', default=root_dir + '/model_weights')
parser.add_argument('--model_save_monitor_value', default='val_acc')
parser.add_argument('--model_save_monitor_mode', default='max')
# model paths
parser.add_argument('--model_load_weights_path', default=None, type=str)
parser.add_argument('--model_name', default='', help=','.join(possible_model_names))
# test_tube settings
parser.add_argument('-en', '--tt_name', default='r_lib_')
parser.add_argument('-td', '--tt_description', default='test research lib')
parser.add_argument('--tt_save_path', default=root_dir + '/test_tube_logs', help='logging dir')
parser.add_argument('--enable_single_run', dest='single_run', action='store_true')
parser.add_argument('--nb_hopt_trials', default=1, type=int)
parser.add_argument('--log_stdout', dest='log_stdout', action='store_true')
# GPU
parser.add_argument('--per_experiment_nb_gpus', default=1, type=int)
parser.add_argument('--gpus', default='0', type=str)
parser.add_argument('--single_run_gpu', dest='single_run_gpu', action='store_true')
parser.add_argument('--disable_cuda', dest='disable_cuda', action='store_true')
# run on hpc
parser.add_argument('--on_cluster', dest='on_cluster', action='store_true')
# FAST training
# use these settings to make sure network has no bugs without running a full dataset
parser.add_argument('--fast_dev_run', dest='fast_dev_run', default=False, action='store_true', help='runs validation after 1 tng step')
parser.add_argument('--enable_tqdm', dest='enable_tqdm', default=False, action='store_true', help='false removes the prog bar')
parser.add_argument('--overfit', default=-1, type=float, help='% of dataset to use with this option. float, or -1 for none')
# debug args
parser.add_argument('--random_seed', default=rand_seed, type=int)
parser.add_argument('--live', dest='live', action='store_true', help='runs on gpu without cluster')
parser.add_argument('--enable_debug', dest='debug', action='store_true', help='enables/disables test tube')
parser.add_argument('--enable_local', dest='local', action='store_true', help='enables local tng')
# optimizer
parser.add_argument('--lr_scheduler_milestones', default=None, type=str)

View File

@ -1,107 +0,0 @@
import torch
import numpy as np
from copy import deepcopy
class PretrainedEmbedding(torch.nn.Embedding):
def __init__(self, embedding_path, embedding_dim, task_vocab, freeze=True, *args, **kwargs):
"""
Loads a prebuilt pytorch embedding from any embedding formated file.
Padding=0 by default.
>>> emb = PretrainedEmbedding(embedding_path='glove.840B.300d.txt',embedding_dim=300, task_vocab={'hello': 1, 'world': 2})
>>> data = torch.Tensor([[0, 1], [0, 2]]).long()
>>> embedded = emb(data)
tensor([[[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
[ 0.2523, 0.1018, -0.6748, ..., 0.1787, -0.5192, 0.3359]],
[[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
[-0.0067, 0.2224, 0.2771, ..., 0.0594, 0.0014, 0.0987]]])
:param embedding_path:
:param emb_dim:
:param task_vocab:
:param freeze:
:return:
"""
# count the vocab
self.vocab_size = max(task_vocab.values()) + 1
super(PretrainedEmbedding, self).__init__(self.vocab_size, embedding_dim, padding_idx=0, *args, **kwargs)
# load pretrained embeddings
new_emb = self.__load_task_specific_embeddings(deepcopy(task_vocab), embedding_path, embedding_dim, freeze)
# transfer weights
self.weight = new_emb.weight
# apply freeze
self.weight.requires_grad = not freeze
def __load_task_specific_embeddings(self, vocab_words, embedding_path, emb_dim, freeze):
"""
Iterates embedding file to only pull out task specific embeddings
:param vocab_words:
:param embedding_path:
:param emb_dim:
:param freeze:
:return:
"""
# holds final embeddings for relevant words
embeddings = np.zeros(shape=(self.vocab_size, emb_dim))
# load embedding line by line and extract relevant embeddings
with open(embedding_path, encoding='utf-8') as f:
for line in f:
tokens = line.split(' ')
word = tokens[0]
embedding = tokens[1:]
embedding[-1] = embedding[-1][:-1] # remove last new line
if word in vocab_words:
vocab_word_i = vocab_words[word]
# skip words that try to overwrite pad idx
if vocab_word_i == 0:
del vocab_words[word]
continue
emb_vals = np.asarray([float(x) for x in embedding])
embeddings[vocab_word_i] = emb_vals
# remove vocab word to early terminate
del vocab_words[word]
# early break
if len(vocab_words) == 0:
break
# add random vectors for the non-pretrained words
# these are vocab words NOT found in the pretrained embeddings
for w, i in vocab_words.items():
# skip words that try to overwrite pad idx
if i == 0:
continue
embedding = np.random.normal(size=emb_dim)
embeddings[i] = embedding
# turn into pt embedding
embeddings = torch.FloatTensor(embeddings)
embeddings = torch.nn.Embedding.from_pretrained(embeddings, freeze=freeze)
return embeddings
if __name__ == '__main__':
emb = PretrainedEmbedding(
embedding_path='/Users/waf/Developer/NGV/research-fermat/fermat/.vector_cache/glove.840B.300d.txt',
embedding_dim=300,
task_vocab={'hello': 1, 'world': 2}
)
data = torch.Tensor([[0, 1], [0, 2]]).long()
embedded = emb(data)
print(embedded)

View File

@ -1,28 +0,0 @@
from matplotlib import pyplot as plt
import numpy as np
np.seterr(divide='ignore', invalid='ignore')
def plot_confusion_matrix(cm,
save_path,
normalize=False,
title='Confusion matrix',
ylabel='y',
xlabel='x'):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
fig = plt.figure()
plt.matshow(cm)
plt.title(title)
plt.colorbar()
plt.ylabel(ylabel)
plt.xlabel(xlabel)
plt.savefig(save_path)

View File

@ -1,261 +0,0 @@
import numpy as np
import os, shutil
class Callback(object):
"""Abstract base class used to build new callbacks.
# Properties
params: dict. Training parameters
(eg. verbosity, batch size, number of epochs...).
model: instance of `keras.models.Model`.
Reference of the model being trained.
The `logs` dictionary that callback methods
take as argument will contain keys for quantities relevant to
the current batch or epoch.
Currently, the `.fit()` method of the `Sequential` model class
will include the following quantities in the `logs` that
it passes to its callbacks:
on_epoch_end: logs include `acc` and `loss`, and
optionally include `val_loss`
(if validation is enabled in `fit`), and `val_acc`
(if validation and accuracy monitoring are enabled).
on_batch_begin: logs include `size`,
the number of samples in the current batch.
on_batch_end: logs include `loss`, and optionally `acc`
(if accuracy monitoring is enabled).
"""
def __init__(self):
self.validation_data = None
self.model = None
def set_params(self, params):
self.params = params
def set_model(self, model):
self.model = model
def on_epoch_begin(self, epoch, logs=None):
pass
def on_epoch_end(self, epoch, logs=None):
pass
def on_batch_begin(self, batch, logs=None):
pass
def on_batch_end(self, batch, logs=None):
pass
def on_train_begin(self, logs=None):
pass
def on_train_end(self, logs=None):
pass
class EarlyStopping(Callback):
"""Stop training when a monitored quantity has stopped improving.
# Arguments
monitor: quantity to be monitored.
min_delta: minimum change in the monitored quantity
to qualify as an improvement, i.e. an absolute
change of less than min_delta, will count as no
improvement.
patience: number of epochs with no improvement
after which training will be stopped.
verbose: verbosity mode.
mode: one of {auto, min, max}. In `min` mode,
training will stop when the quantity
monitored has stopped decreasing; in `max`
mode it will stop when the quantity
monitored has stopped increasing; in `auto`
mode, the direction is automatically inferred
from the name of the monitored quantity.
"""
def __init__(self, monitor='val_loss',
min_delta=0.0, patience=0, verbose=0, mode='auto'):
super(EarlyStopping, self).__init__()
self.monitor = monitor
self.patience = patience
self.verbose = verbose
self.min_delta = min_delta
self.wait = 0
self.stopped_epoch = 0
if mode not in ['auto', 'min', 'max']:
print('EarlyStopping mode %s is unknown, fallback to auto mode.' % mode)
mode = 'auto'
if mode == 'min':
self.monitor_op = np.less
elif mode == 'max':
self.monitor_op = np.greater
else:
if 'acc' in self.monitor:
self.monitor_op = np.greater
else:
self.monitor_op = np.less
if self.monitor_op == np.greater:
self.min_delta *= 1
else:
self.min_delta *= -1
self.on_train_begin()
def on_train_begin(self, logs=None):
# Allow instances to be re-used
self.wait = 0
self.stopped_epoch = 0
self.best = np.Inf if self.monitor_op == np.less else -np.Inf
def on_epoch_end(self, epoch, logs=None):
current = logs.get(self.monitor)
stop_training = False
if current is None:
print('Early stopping conditioned on metric `%s` ''which is not available. Available metrics are: %s' %
(self.monitor, ','.join(list(logs.keys()))), RuntimeWarning
)
exit(-1)
if self.monitor_op(current - self.min_delta, self.best):
self.best = current
self.wait = 0
else:
self.wait += 1
if self.wait >= self.patience:
self.stopped_epoch = epoch
stop_training = True
self.on_train_end()
return stop_training
def on_train_end(self, logs=None):
if self.stopped_epoch > 0 and self.verbose > 0:
print('Epoch %05d: early stopping' % (self.stopped_epoch + 1))
class ModelCheckpoint(Callback):
"""Save the model after every epoch.
`filepath` can contain named formatting options,
which will be filled the value of `epoch` and
keys in `logs` (passed in `on_epoch_end`).
For example: if `filepath` is `weights.{epoch:02d}-{val_loss:.2f}.hdf5`,
then the model checkpoints will be saved with the epoch number and
the validation loss in the filename.
# Arguments
filepath: string, path to save the model file.
monitor: quantity to monitor.
verbose: verbosity mode, 0 or 1.
save_best_only: if `save_best_only=True`,
the latest best model according to
the quantity monitored will not be overwritten.
mode: one of {auto, min, max}.
If `save_best_only=True`, the decision
to overwrite the current save file is made
based on either the maximization or the
minimization of the monitored quantity. For `val_acc`,
this should be `max`, for `val_loss` this should
be `min`, etc. In `auto` mode, the direction is
automatically inferred from the name of the monitored quantity.
save_weights_only: if True, then only the model's weights will be
saved (`model.save_weights(filepath)`), else the full model
is saved (`model.save(filepath)`).
period: Interval (number of epochs) between checkpoints.
"""
def __init__(self, filepath, save_function, monitor='val_loss', verbose=0,
save_best_only=False, save_weights_only=False,
mode='auto', period=1, prefix=''):
super(ModelCheckpoint, self).__init__()
self.monitor = monitor
self.save_function = save_function
self.verbose = verbose
self.filepath = filepath
self.save_best_only = save_best_only
self.save_weights_only = save_weights_only
self.period = period
self.epochs_since_last_save = 0
self.prefix = prefix
if mode not in ['auto', 'min', 'max']:
print('ModelCheckpoint mode %s is unknown, '
'fallback to auto mode.' % (mode),
RuntimeWarning)
mode = 'auto'
if mode == 'min':
self.monitor_op = np.less
self.best = np.Inf
elif mode == 'max':
self.monitor_op = np.greater
self.best = -np.Inf
else:
if 'acc' in self.monitor or self.monitor.startswith('fmeasure'):
self.monitor_op = np.greater
self.best = -np.Inf
else:
self.monitor_op = np.less
self.best = np.Inf
def save_model(self, filepath, overwrite):
dirpath = '/'.join(filepath.split('/')[:-1])
# make paths
os.makedirs(os.path.dirname(filepath), exist_ok=True)
if overwrite:
for filename in os.listdir(dirpath):
if self.prefix in filename:
path_to_delete = os.path.join(dirpath, filename)
try:
shutil.rmtree(path_to_delete)
except OSError:
os.remove(path_to_delete)
# delegate the saving to the model
self.save_function(filepath)
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
self.epochs_since_last_save += 1
if self.epochs_since_last_save >= self.period:
self.epochs_since_last_save = 0
filepath = '{}/{}_ckpt_epoch_{}.ckpt'.format(self.filepath, self.prefix, epoch + 1)
if self.save_best_only:
current = logs.get(self.monitor)
if current is None:
print('Can save best model only with %s available, '
'skipping.' % (self.monitor), RuntimeWarning)
else:
if self.monitor_op(current, self.best):
if self.verbose > 0:
print('\nEpoch %05d: %s improved from %0.5f to %0.5f,'
' saving model to %s'
% (epoch + 1, self.monitor, self.best,
current, filepath))
self.best = current
self.save_model(filepath, overwrite=True)
else:
if self.verbose > 0:
print('\nEpoch %05d: %s did not improve' %
(epoch + 1, self.monitor))
else:
if self.verbose > 0:
print('\nEpoch %05d: saving model to %s' % (epoch + 1, filepath))
self.save_model(filepath, overwrite=False)
if __name__ == '__main__':
c = EarlyStopping(min_delta=0.9, patience=2, verbose=True)
losses = [10, 9, 8, 8, 6, 4.3, 5, 4.4, 2.8, 2.5]
for i, loss in enumerate(losses):
should_stop = c.on_epoch_end(i, logs={'val_loss': loss})
print(loss)
if should_stop:
break