lightning/tests/deprecated_api/test_remove_1-6.py

321 lines
12 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Test deprecated functionality which will be removed in v1.6.0 """
import pytest
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
from pytorch_lightning.core.memory import ModelSummary
from pytorch_lightning.plugins.training_type import DDPPlugin, DDPSpawnPlugin
from pytorch_lightning.utilities.distributed import rank_zero_deprecation, rank_zero_warn
from pytorch_lightning.utilities.model_helpers import is_overridden
from tests.deprecated_api import _soft_unimport_module
from tests.helpers import BoringDataModule, BoringModel
def test_v1_6_0_trainer_model_hook_mixin(tmpdir):
model = BoringModel()
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, checkpoint_callback=False, logger=False)
trainer.fit(model)
with pytest.deprecated_call(match="is deprecated in v1.4 and will be removed in v1.6"):
trainer.is_function_implemented("training_step", model)
with pytest.deprecated_call(match="is deprecated in v1.4 and will be removed in v1.6"):
trainer.has_arg("training_step", "batch")
def test_v1_6_0_dataloader_renaming(tmpdir):
model = BoringModel()
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True)
dl = model.train_dataloader()
with pytest.deprecated_call(match=r"fit\(train_dataloader\)` is deprecated in v1.4"):
trainer.fit(model, train_dataloader=dl)
with pytest.deprecated_call(match=r"validate\(val_dataloaders\)` is deprecated in v1.4"):
trainer.validate(model, val_dataloaders=dl)
with pytest.deprecated_call(match=r"test\(test_dataloaders\)` is deprecated in v1.4"):
trainer.test(model, test_dataloaders=dl)
with pytest.deprecated_call(match=r"tune\(train_dataloader\)` is deprecated in v1.4"):
trainer.tune(model, train_dataloader=dl)
with pytest.deprecated_call(match=r"tune\(train_dataloader\)` is deprecated in v1.4"):
trainer.tuner.scale_batch_size(model, train_dataloader=dl)
with pytest.deprecated_call(match=r"tune\(train_dataloader\)` is deprecated in v1.4"):
trainer.tuner.lr_find(model, train_dataloader=dl)
def test_old_transfer_batch_to_device_hook(tmpdir):
class OldModel(BoringModel):
def transfer_batch_to_device(self, batch, device):
return super().transfer_batch_to_device(batch, device, None)
trainer = Trainer(default_root_dir=tmpdir, limit_train_batches=1, limit_val_batches=0, max_epochs=1)
with pytest.deprecated_call(match="old signature will be removed in v1.6"):
trainer.fit(OldModel())
def test_v1_6_0_ddp_num_nodes():
with pytest.deprecated_call(match="Argument `num_nodes` in `DDPPlugin` is deprecated in v1.4"):
DDPPlugin(num_nodes=1)
def test_v1_6_0_ddp_sync_batchnorm():
with pytest.deprecated_call(match="Argument `sync_batchnorm` in `DDPPlugin` is deprecated in v1.4"):
DDPPlugin(sync_batchnorm=False)
def test_v1_6_0_ddp_spawn_num_nodes():
with pytest.deprecated_call(match="Argument `num_nodes` in `DDPSpawnPlugin` is deprecated in v1.4"):
DDPSpawnPlugin(num_nodes=1)
def test_v1_6_0_ddp_spawn_sync_batchnorm():
with pytest.deprecated_call(match="Argument `sync_batchnorm` in `DDPSpawnPlugin` is deprecated in v1.4"):
DDPSpawnPlugin(sync_batchnorm=False)
def test_v1_6_0_reload_dataloaders_every_epoch(tmpdir):
model = BoringModel()
with pytest.deprecated_call(match="`reload_dataloaders_every_epoch` is deprecated in v1.4 and will be removed"):
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=0.3,
limit_val_batches=0.3,
reload_dataloaders_every_epoch=True,
max_epochs=3,
)
trainer.fit(model)
trainer.test()
# verify the sequence
calls = trainer.dev_debugger.dataloader_sequence_calls
expected_sequence = ["val_dataloader"] + ["train_dataloader", "val_dataloader"] * 3 + ["test_dataloader"]
for call, expected in zip(calls, expected_sequence):
assert call["name"] == expected
def test_v1_6_0_tbptt_reduce_fx(tmpdir):
class TestModel(BoringModel):
def training_step(self, *args):
self.log("foo", 1, tbptt_reduce_fx=lambda x: x)
return super().training_step(*args)
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True)
with pytest.deprecated_call(match=r"tbptt_reduce_fx=...\)` is no longer supported"):
trainer.fit(TestModel())
def test_v1_6_0_tbptt_pad_token(tmpdir):
class TestModel(BoringModel):
def training_step(self, *args):
self.log("foo", 1, tbptt_pad_token=0)
return super().training_step(*args)
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True)
with pytest.deprecated_call(match=r"tbptt_pad_token=...\)` is no longer supported"):
trainer.fit(TestModel())
def test_v1_6_0_sync_dist_op(tmpdir):
class TestModel(BoringModel):
def training_step(self, *args):
self.log("foo", 1, sync_dist_op="sum")
return super().training_step(*args)
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True)
with pytest.deprecated_call(match=r"`self.log\(sync_dist_op='sum'\)` is deprecated"):
trainer.fit(TestModel())
def test_v1_6_0_datamodule_lifecycle_properties(tmpdir):
dm = BoringDataModule()
with pytest.deprecated_call(match=r"DataModule property `has_prepared_data` was deprecated in v1.4"):
dm.has_prepared_data
with pytest.deprecated_call(match=r"DataModule property `has_setup_fit` was deprecated in v1.4"):
dm.has_setup_fit
with pytest.deprecated_call(match=r"DataModule property `has_setup_validate` was deprecated in v1.4"):
dm.has_setup_validate
with pytest.deprecated_call(match=r"DataModule property `has_setup_test` was deprecated in v1.4"):
dm.has_setup_test
with pytest.deprecated_call(match=r"DataModule property `has_setup_predict` was deprecated in v1.4"):
dm.has_setup_predict
with pytest.deprecated_call(match=r"DataModule property `has_teardown_fit` was deprecated in v1.4"):
dm.has_teardown_fit
with pytest.deprecated_call(match=r"DataModule property `has_teardown_validate` was deprecated in v1.4"):
dm.has_teardown_validate
with pytest.deprecated_call(match=r"DataModule property `has_teardown_test` was deprecated in v1.4"):
dm.has_teardown_test
with pytest.deprecated_call(match=r"DataModule property `has_teardown_predict` was deprecated in v1.4"):
dm.has_teardown_predict
def test_v1_6_0_datamodule_hooks_calls(tmpdir):
"""Test that repeated calls to DataHooks' hooks show a warning about the coming API change."""
class TestDataModule(BoringDataModule):
setup_calls = []
teardown_calls = []
prepare_data_calls = 0
def setup(self, stage=None):
super().setup(stage=stage)
self.setup_calls.append(stage)
def teardown(self, stage=None):
super().teardown(stage=stage)
self.teardown_calls.append(stage)
def prepare_data(self):
super().prepare_data()
self.prepare_data_calls += 1
dm = TestDataModule()
dm.prepare_data()
dm.prepare_data()
dm.setup("fit")
with pytest.deprecated_call(
match=r"DataModule.setup has already been called, so it will not be called again. "
"In v1.6 this behavior will change to always call DataModule.setup"
):
dm.setup("fit")
dm.setup()
dm.setup()
dm.teardown("validate")
with pytest.deprecated_call(
match=r"DataModule.teardown has already been called, so it will not be called again. "
"In v1.6 this behavior will change to always call DataModule.teardown"
):
dm.teardown("validate")
assert dm.prepare_data_calls == 1
assert dm.setup_calls == ["fit", None]
assert dm.teardown_calls == ["validate"]
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=1)
trainer.test(BoringModel(), datamodule=dm)
# same number of calls
assert dm.prepare_data_calls == 1
assert dm.setup_calls == ["fit", None]
assert dm.teardown_calls == ["validate", "test"]
def test_v1_6_0_is_overridden_model():
model = BoringModel()
with pytest.deprecated_call(match="and will be removed in v1.6"):
assert is_overridden("validation_step", model=model)
with pytest.deprecated_call(match="and will be removed in v1.6"):
assert not is_overridden("foo", model=model)
def test_v1_6_0_early_stopping_monitor(tmpdir):
with pytest.deprecated_call(
match=r"The `EarlyStopping\(monitor\)` argument will be required starting in v1.6."
" For backward compatibility, setting this to `early_stop_on`."
):
EarlyStopping()
def test_v1_6_0_extras_with_gradients(tmpdir):
class TestModel(BoringModel):
def training_step(self, *args):
loss = super().training_step(*args)["loss"]
return {"loss": loss, "foo": loss}
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=1)
model = TestModel()
match = r"\{'foo'\} has a `grad_fn`.*behaviour will change in v1\.6"
with pytest.deprecated_call(match=match):
trainer.fit(model)
def test_v1_6_0_train_loop(tmpdir):
trainer = Trainer()
with pytest.deprecated_call(
match=r"`Trainer.train_loop` has been renamed to `Trainer.fit_loop` and will be removed in v1.6."
):
_ = trainer.train_loop
def test_v1_6_0_rank_zero_warnings_moved():
with pytest.deprecated_call(match="in v1.3.7 and will be removed in v1.6"):
rank_zero_warn("test")
with pytest.deprecated_call(match="in v1.3.7 and will be removed in v1.6"):
rank_zero_deprecation("test")
def test_v1_6_0_ddp_plugin_task_idx():
plugin = DDPPlugin()
with pytest.deprecated_call(match="Use `DDPPlugin.local_rank` instead"):
_ = plugin.task_idx
def test_v1_6_0_lightning_module_loaded_optimizer_states_dict():
from pytorch_lightning.core.lightning import warning_cache
model = BoringModel()
_ = model.loaded_optimizer_states_dict
assert any(
"The `LightningModule.loaded_optimizer_states_dict` property is deprecated in v1.4" in w for w in warning_cache
)
warning_cache.clear()
model.loaded_optimizer_states_dict = {}
assert any(
"The `LightningModule.loaded_optimizer_states_dict` property is deprecated in v1.4" in w for w in warning_cache
)
warning_cache.clear()
def test_v1_6_0_deprecated_model_summary_mode(tmpdir):
model = BoringModel()
with pytest.deprecated_call(match="Argument `mode` in `ModelSummary` is deprecated in v1.4"):
ModelSummary(model, mode="top")
with pytest.deprecated_call(match="Argument `mode` in `LightningModule.summarize` is deprecated in v1.4"):
model.summarize(mode="top")
def test_v1_6_0_deprecated_disable_validation():
trainer = Trainer()
with pytest.deprecated_call(match="disable_validation` is deprecated in v1.4"):
_ = trainer.disable_validation
def test_v1_6_0_every_n_val_epochs():
with pytest.deprecated_call(match="use `every_n_epochs` instead"):
_ = ModelCheckpoint(every_n_val_epochs=1)
def test_v1_6_0_deprecated_hpc_load(tmpdir):
model = BoringModel()
trainer = Trainer(default_root_dir=tmpdir, max_steps=1)
trainer.fit(model)
trainer.checkpoint_connector.hpc_save(tmpdir, trainer.logger)
checkpoint_path = trainer.checkpoint_connector.get_max_ckpt_path_from_folder(str(tmpdir))
with pytest.deprecated_call(match=r"`CheckpointConnector.hpc_load\(\)` was deprecated in v1.4"):
trainer.checkpoint_connector.hpc_load(checkpoint_path)
def test_v1_6_0_deprecated_device_dtype_mixin_import():
_soft_unimport_module("pytorch_lightning.utilities.device_dtype_mixin")
with pytest.deprecated_call(match="will be removed in v1.6"):
from pytorch_lightning.utilities.device_dtype_mixin import DeviceDtypeModuleMixin # noqa: F401