# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Test deprecated functionality which will be removed in v1.6.0 """ import pytest from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.callbacks.early_stopping import EarlyStopping from pytorch_lightning.core.memory import ModelSummary from pytorch_lightning.plugins.training_type import DDPPlugin, DDPSpawnPlugin from pytorch_lightning.utilities.distributed import rank_zero_deprecation, rank_zero_warn from pytorch_lightning.utilities.model_helpers import is_overridden from tests.deprecated_api import _soft_unimport_module from tests.helpers import BoringDataModule, BoringModel def test_v1_6_0_trainer_model_hook_mixin(tmpdir): model = BoringModel() trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, checkpoint_callback=False, logger=False) trainer.fit(model) with pytest.deprecated_call(match="is deprecated in v1.4 and will be removed in v1.6"): trainer.is_function_implemented("training_step", model) with pytest.deprecated_call(match="is deprecated in v1.4 and will be removed in v1.6"): trainer.has_arg("training_step", "batch") def test_v1_6_0_dataloader_renaming(tmpdir): model = BoringModel() trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True) dl = model.train_dataloader() with pytest.deprecated_call(match=r"fit\(train_dataloader\)` is deprecated in v1.4"): trainer.fit(model, train_dataloader=dl) with pytest.deprecated_call(match=r"validate\(val_dataloaders\)` is deprecated in v1.4"): trainer.validate(model, val_dataloaders=dl) with pytest.deprecated_call(match=r"test\(test_dataloaders\)` is deprecated in v1.4"): trainer.test(model, test_dataloaders=dl) with pytest.deprecated_call(match=r"tune\(train_dataloader\)` is deprecated in v1.4"): trainer.tune(model, train_dataloader=dl) with pytest.deprecated_call(match=r"tune\(train_dataloader\)` is deprecated in v1.4"): trainer.tuner.scale_batch_size(model, train_dataloader=dl) with pytest.deprecated_call(match=r"tune\(train_dataloader\)` is deprecated in v1.4"): trainer.tuner.lr_find(model, train_dataloader=dl) def test_old_transfer_batch_to_device_hook(tmpdir): class OldModel(BoringModel): def transfer_batch_to_device(self, batch, device): return super().transfer_batch_to_device(batch, device, None) trainer = Trainer(default_root_dir=tmpdir, limit_train_batches=1, limit_val_batches=0, max_epochs=1) with pytest.deprecated_call(match="old signature will be removed in v1.6"): trainer.fit(OldModel()) def test_v1_6_0_ddp_num_nodes(): with pytest.deprecated_call(match="Argument `num_nodes` in `DDPPlugin` is deprecated in v1.4"): DDPPlugin(num_nodes=1) def test_v1_6_0_ddp_sync_batchnorm(): with pytest.deprecated_call(match="Argument `sync_batchnorm` in `DDPPlugin` is deprecated in v1.4"): DDPPlugin(sync_batchnorm=False) def test_v1_6_0_ddp_spawn_num_nodes(): with pytest.deprecated_call(match="Argument `num_nodes` in `DDPSpawnPlugin` is deprecated in v1.4"): DDPSpawnPlugin(num_nodes=1) def test_v1_6_0_ddp_spawn_sync_batchnorm(): with pytest.deprecated_call(match="Argument `sync_batchnorm` in `DDPSpawnPlugin` is deprecated in v1.4"): DDPSpawnPlugin(sync_batchnorm=False) def test_v1_6_0_reload_dataloaders_every_epoch(tmpdir): model = BoringModel() with pytest.deprecated_call(match="`reload_dataloaders_every_epoch` is deprecated in v1.4 and will be removed"): trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=0.3, limit_val_batches=0.3, reload_dataloaders_every_epoch=True, max_epochs=3, ) trainer.fit(model) trainer.test() # verify the sequence calls = trainer.dev_debugger.dataloader_sequence_calls expected_sequence = ["val_dataloader"] + ["train_dataloader", "val_dataloader"] * 3 + ["test_dataloader"] for call, expected in zip(calls, expected_sequence): assert call["name"] == expected def test_v1_6_0_tbptt_reduce_fx(tmpdir): class TestModel(BoringModel): def training_step(self, *args): self.log("foo", 1, tbptt_reduce_fx=lambda x: x) return super().training_step(*args) trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True) with pytest.deprecated_call(match=r"tbptt_reduce_fx=...\)` is no longer supported"): trainer.fit(TestModel()) def test_v1_6_0_tbptt_pad_token(tmpdir): class TestModel(BoringModel): def training_step(self, *args): self.log("foo", 1, tbptt_pad_token=0) return super().training_step(*args) trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True) with pytest.deprecated_call(match=r"tbptt_pad_token=...\)` is no longer supported"): trainer.fit(TestModel()) def test_v1_6_0_sync_dist_op(tmpdir): class TestModel(BoringModel): def training_step(self, *args): self.log("foo", 1, sync_dist_op="sum") return super().training_step(*args) trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True) with pytest.deprecated_call(match=r"`self.log\(sync_dist_op='sum'\)` is deprecated"): trainer.fit(TestModel()) def test_v1_6_0_datamodule_lifecycle_properties(tmpdir): dm = BoringDataModule() with pytest.deprecated_call(match=r"DataModule property `has_prepared_data` was deprecated in v1.4"): dm.has_prepared_data with pytest.deprecated_call(match=r"DataModule property `has_setup_fit` was deprecated in v1.4"): dm.has_setup_fit with pytest.deprecated_call(match=r"DataModule property `has_setup_validate` was deprecated in v1.4"): dm.has_setup_validate with pytest.deprecated_call(match=r"DataModule property `has_setup_test` was deprecated in v1.4"): dm.has_setup_test with pytest.deprecated_call(match=r"DataModule property `has_setup_predict` was deprecated in v1.4"): dm.has_setup_predict with pytest.deprecated_call(match=r"DataModule property `has_teardown_fit` was deprecated in v1.4"): dm.has_teardown_fit with pytest.deprecated_call(match=r"DataModule property `has_teardown_validate` was deprecated in v1.4"): dm.has_teardown_validate with pytest.deprecated_call(match=r"DataModule property `has_teardown_test` was deprecated in v1.4"): dm.has_teardown_test with pytest.deprecated_call(match=r"DataModule property `has_teardown_predict` was deprecated in v1.4"): dm.has_teardown_predict def test_v1_6_0_datamodule_hooks_calls(tmpdir): """Test that repeated calls to DataHooks' hooks show a warning about the coming API change.""" class TestDataModule(BoringDataModule): setup_calls = [] teardown_calls = [] prepare_data_calls = 0 def setup(self, stage=None): super().setup(stage=stage) self.setup_calls.append(stage) def teardown(self, stage=None): super().teardown(stage=stage) self.teardown_calls.append(stage) def prepare_data(self): super().prepare_data() self.prepare_data_calls += 1 dm = TestDataModule() dm.prepare_data() dm.prepare_data() dm.setup("fit") with pytest.deprecated_call( match=r"DataModule.setup has already been called, so it will not be called again. " "In v1.6 this behavior will change to always call DataModule.setup" ): dm.setup("fit") dm.setup() dm.setup() dm.teardown("validate") with pytest.deprecated_call( match=r"DataModule.teardown has already been called, so it will not be called again. " "In v1.6 this behavior will change to always call DataModule.teardown" ): dm.teardown("validate") assert dm.prepare_data_calls == 1 assert dm.setup_calls == ["fit", None] assert dm.teardown_calls == ["validate"] trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=1) trainer.test(BoringModel(), datamodule=dm) # same number of calls assert dm.prepare_data_calls == 1 assert dm.setup_calls == ["fit", None] assert dm.teardown_calls == ["validate", "test"] def test_v1_6_0_is_overridden_model(): model = BoringModel() with pytest.deprecated_call(match="and will be removed in v1.6"): assert is_overridden("validation_step", model=model) with pytest.deprecated_call(match="and will be removed in v1.6"): assert not is_overridden("foo", model=model) def test_v1_6_0_early_stopping_monitor(tmpdir): with pytest.deprecated_call( match=r"The `EarlyStopping\(monitor\)` argument will be required starting in v1.6." " For backward compatibility, setting this to `early_stop_on`." ): EarlyStopping() def test_v1_6_0_extras_with_gradients(tmpdir): class TestModel(BoringModel): def training_step(self, *args): loss = super().training_step(*args)["loss"] return {"loss": loss, "foo": loss} trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=1) model = TestModel() match = r"\{'foo'\} has a `grad_fn`.*behaviour will change in v1\.6" with pytest.deprecated_call(match=match): trainer.fit(model) def test_v1_6_0_train_loop(tmpdir): trainer = Trainer() with pytest.deprecated_call( match=r"`Trainer.train_loop` has been renamed to `Trainer.fit_loop` and will be removed in v1.6." ): _ = trainer.train_loop def test_v1_6_0_rank_zero_warnings_moved(): with pytest.deprecated_call(match="in v1.3.7 and will be removed in v1.6"): rank_zero_warn("test") with pytest.deprecated_call(match="in v1.3.7 and will be removed in v1.6"): rank_zero_deprecation("test") def test_v1_6_0_ddp_plugin_task_idx(): plugin = DDPPlugin() with pytest.deprecated_call(match="Use `DDPPlugin.local_rank` instead"): _ = plugin.task_idx def test_v1_6_0_lightning_module_loaded_optimizer_states_dict(): from pytorch_lightning.core.lightning import warning_cache model = BoringModel() _ = model.loaded_optimizer_states_dict assert any( "The `LightningModule.loaded_optimizer_states_dict` property is deprecated in v1.4" in w for w in warning_cache ) warning_cache.clear() model.loaded_optimizer_states_dict = {} assert any( "The `LightningModule.loaded_optimizer_states_dict` property is deprecated in v1.4" in w for w in warning_cache ) warning_cache.clear() def test_v1_6_0_deprecated_model_summary_mode(tmpdir): model = BoringModel() with pytest.deprecated_call(match="Argument `mode` in `ModelSummary` is deprecated in v1.4"): ModelSummary(model, mode="top") with pytest.deprecated_call(match="Argument `mode` in `LightningModule.summarize` is deprecated in v1.4"): model.summarize(mode="top") def test_v1_6_0_deprecated_disable_validation(): trainer = Trainer() with pytest.deprecated_call(match="disable_validation` is deprecated in v1.4"): _ = trainer.disable_validation def test_v1_6_0_every_n_val_epochs(): with pytest.deprecated_call(match="use `every_n_epochs` instead"): _ = ModelCheckpoint(every_n_val_epochs=1) def test_v1_6_0_deprecated_hpc_load(tmpdir): model = BoringModel() trainer = Trainer(default_root_dir=tmpdir, max_steps=1) trainer.fit(model) trainer.checkpoint_connector.hpc_save(tmpdir, trainer.logger) checkpoint_path = trainer.checkpoint_connector.get_max_ckpt_path_from_folder(str(tmpdir)) with pytest.deprecated_call(match=r"`CheckpointConnector.hpc_load\(\)` was deprecated in v1.4"): trainer.checkpoint_connector.hpc_load(checkpoint_path) def test_v1_6_0_deprecated_device_dtype_mixin_import(): _soft_unimport_module("pytorch_lightning.utilities.device_dtype_mixin") with pytest.deprecated_call(match="will be removed in v1.6"): from pytorch_lightning.utilities.device_dtype_mixin import DeviceDtypeModuleMixin # noqa: F401