lightning/tests
Carlos Mocholí ec4f8856af
Enable logger connector re-design (#7891)
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
2021-06-09 14:24:45 +00:00
..
accelerators [IPU] Add reset dataloader hooks to training type plugin 3/n (#7861) 2021-06-07 10:37:09 +00:00
base Merge pull request #7872 from PyTorchLightning/refactor/logger-poc-changes 2021-06-08 09:04:16 -04:00
callbacks Enable logger connector re-design (#7891) 2021-06-09 14:24:45 +00:00
checkpointing Remove metric tracking from dev debugger (#7759) 2021-05-30 12:03:42 +02:00
core Enable logger connector re-design (#7891) 2021-06-09 14:24:45 +00:00
deprecated_api Enable logger connector re-design (#7891) 2021-06-09 14:24:45 +00:00
helpers Merge pull request #7872 from PyTorchLightning/refactor/logger-poc-changes 2021-06-08 09:04:16 -04:00
loggers add logger to __all__ (#6854) 2021-06-09 13:07:02 +00:00
metrics Some test updates (#7761) 2021-05-30 13:15:25 +02:00
models Enable logger connector re-design (#7891) 2021-06-09 14:24:45 +00:00
overrides Fix double precision + ddp_spawn (#6924) 2021-06-01 15:21:17 +00:00
plugins Merge pull request #7872 from PyTorchLightning/refactor/logger-poc-changes 2021-06-08 09:04:16 -04:00
trainer Enable logger connector re-design (#7891) 2021-06-09 14:24:45 +00:00
tuner Increment the total batch idx before the accumulation early exit (#7692) 2021-05-25 10:23:40 +02:00
utilities [bugfix] Minor improvements to `apply_to_collection` and type signature of `log_dict` (#7851) 2021-06-07 09:31:36 +01:00
README.md Delete unused CI scripts (#7152) 2021-04-22 03:07:48 +02:00
__init__.py fixing examples (#6600) 2021-03-20 18:58:59 +00:00
collect_env_details.py
conftest.py CI: fixture for global rank variable reset (#6839) 2021-04-06 09:37:17 -07:00
mnode_tests.txt
special_tests.sh [IPU] Add special tests for IPUs 2/n (#7833) 2021-06-04 23:23:09 +05:30
test_profiler.py Remove ProfilerConnector class (#7654) 2021-05-24 08:58:15 -07:00

README.md

PyTorch-Lightning Tests

Most PL tests train a full MNIST model under various trainer conditions (ddp, ddp2+amp, etc...). This provides testing for most combinations of important settings. The tests expect the model to perform to a reasonable degree of testing accuracy to pass.

Running tests

git clone https://github.com/PyTorchLightning/pytorch-lightning
cd pytorch-lightning

# install dev deps
pip install -r requirements/devel.txt

# run tests
py.test -v

To test models that require GPU make sure to run the above command on a GPU machine. The GPU machine must have at least 2 GPUs to run distributed tests.

Note that this setup will not run tests that require specific packages installed such as Horovod, FairScale, NVIDIA/apex, NVIDIA/DALI, etc. You can rely on our CI to make sure all these tests pass.

Running Coverage

Make sure to run coverage on a GPU machine with at least 2 GPUs and NVIDIA apex installed.

cd pytorch-lightning

# generate coverage (coverage is also installed as part of dev dependencies under requirements/devel.txt)
coverage run --source pytorch_lightning -m py.test pytorch_lightning tests examples -v

# print coverage stats
coverage report -m

# exporting results
coverage xml

Building test image

You can build it on your own, note it takes lots of time, be prepared.

git clone <git-repository>
docker image build -t pytorch_lightning:devel-torch1.4 -f dockers/cuda-extras/Dockerfile --build-arg TORCH_VERSION=1.4 .

To build other versions, select different Dockerfile.

docker image list
docker run --rm -it pytorch_lightning:devel-torch1.4 bash
docker image rm pytorch_lightning:devel-torch1.4