lightning/examples/fabric/image_classifier/train_torch.py

153 lines
5.5 KiB
Python

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from os import path
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as T
from torch.optim.lr_scheduler import StepLR
from torchvision.datasets import MNIST
DATASETS_PATH = path.join(path.dirname(__file__), "..", "..", "..", "Datasets")
# Credit to the PyTorch team
# Taken from https://github.com/pytorch/examples/blob/master/mnist/main.py and slightly adapted.
class Net(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def run(hparams):
torch.manual_seed(hparams.seed)
use_cuda = torch.cuda.is_available()
use_mps = torch.backends.mps.is_available()
if use_cuda:
device = torch.device("cuda")
elif use_mps:
device = torch.device("mps")
else:
device = torch.device("cpu")
transform = T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))])
train_dataset = MNIST(DATASETS_PATH, train=True, download=True, transform=transform)
test_dataset = MNIST(DATASETS_PATH, train=False, transform=transform)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=hparams.batch_size,
)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=hparams.batch_size)
model = Net().to(device)
optimizer = optim.Adadelta(model.parameters(), lr=hparams.lr)
scheduler = StepLR(optimizer, step_size=1, gamma=hparams.gamma)
# EPOCH LOOP
for epoch in range(1, hparams.epochs + 1):
# TRAINING LOOP
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if (batch_idx == 0) or ((batch_idx + 1) % hparams.log_interval == 0):
print(
f"Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)}"
f" ({100.0 * batch_idx / len(train_loader):.0f}%)]\tLoss: {loss.item():.6f}"
)
if hparams.dry_run:
break
scheduler.step()
# TESTING LOOP
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction="sum").item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
if hparams.dry_run:
break
test_loss /= len(test_loader.dataset)
print(
f"\nTest set: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(test_loader.dataset)}"
f" ({100.0 * correct / len(test_loader.dataset):.0f}%)\n"
)
if hparams.dry_run:
break
if hparams.save_model:
torch.save(model.state_dict(), "mnist_cnn.pt")
def main():
parser = argparse.ArgumentParser(description="PyTorch MNIST Example")
parser.add_argument(
"--batch-size", type=int, default=64, metavar="N", help="input batch size for training (default: 64)"
)
parser.add_argument("--epochs", type=int, default=14, metavar="N", help="number of epochs to train (default: 14)")
parser.add_argument("--lr", type=float, default=1.0, metavar="LR", help="learning rate (default: 1.0)")
parser.add_argument("--gamma", type=float, default=0.7, metavar="M", help="Learning rate step gamma (default: 0.7)")
parser.add_argument("--dry-run", action="store_true", default=False, help="quickly check a single pass")
parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)")
parser.add_argument(
"--log-interval",
type=int,
default=10,
metavar="N",
help="how many batches to wait before logging training status",
)
parser.add_argument("--save-model", action="store_true", default=False, help="For Saving the current Model")
hparams = parser.parse_args()
run(hparams)
if __name__ == "__main__":
main()