153 lines
5.5 KiB
Python
153 lines
5.5 KiB
Python
# Copyright The Lightning AI team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
from os import path
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.optim as optim
|
|
import torchvision.transforms as T
|
|
from torch.optim.lr_scheduler import StepLR
|
|
from torchvision.datasets import MNIST
|
|
|
|
DATASETS_PATH = path.join(path.dirname(__file__), "..", "..", "..", "Datasets")
|
|
|
|
|
|
# Credit to the PyTorch team
|
|
# Taken from https://github.com/pytorch/examples/blob/master/mnist/main.py and slightly adapted.
|
|
class Net(nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.conv1 = nn.Conv2d(1, 32, 3, 1)
|
|
self.conv2 = nn.Conv2d(32, 64, 3, 1)
|
|
self.dropout1 = nn.Dropout(0.25)
|
|
self.dropout2 = nn.Dropout(0.5)
|
|
self.fc1 = nn.Linear(9216, 128)
|
|
self.fc2 = nn.Linear(128, 10)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = F.relu(x)
|
|
x = self.conv2(x)
|
|
x = F.relu(x)
|
|
x = F.max_pool2d(x, 2)
|
|
x = self.dropout1(x)
|
|
x = torch.flatten(x, 1)
|
|
x = self.fc1(x)
|
|
x = F.relu(x)
|
|
x = self.dropout2(x)
|
|
x = self.fc2(x)
|
|
return F.log_softmax(x, dim=1)
|
|
|
|
|
|
def run(hparams):
|
|
torch.manual_seed(hparams.seed)
|
|
|
|
use_cuda = torch.cuda.is_available()
|
|
use_mps = torch.backends.mps.is_available()
|
|
if use_cuda:
|
|
device = torch.device("cuda")
|
|
elif use_mps:
|
|
device = torch.device("mps")
|
|
else:
|
|
device = torch.device("cpu")
|
|
|
|
transform = T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))])
|
|
train_dataset = MNIST(DATASETS_PATH, train=True, download=True, transform=transform)
|
|
test_dataset = MNIST(DATASETS_PATH, train=False, transform=transform)
|
|
train_loader = torch.utils.data.DataLoader(
|
|
train_dataset,
|
|
batch_size=hparams.batch_size,
|
|
)
|
|
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=hparams.batch_size)
|
|
|
|
model = Net().to(device)
|
|
optimizer = optim.Adadelta(model.parameters(), lr=hparams.lr)
|
|
|
|
scheduler = StepLR(optimizer, step_size=1, gamma=hparams.gamma)
|
|
|
|
# EPOCH LOOP
|
|
for epoch in range(1, hparams.epochs + 1):
|
|
# TRAINING LOOP
|
|
model.train()
|
|
for batch_idx, (data, target) in enumerate(train_loader):
|
|
data, target = data.to(device), target.to(device)
|
|
optimizer.zero_grad()
|
|
output = model(data)
|
|
loss = F.nll_loss(output, target)
|
|
loss.backward()
|
|
optimizer.step()
|
|
if (batch_idx == 0) or ((batch_idx + 1) % hparams.log_interval == 0):
|
|
print(
|
|
f"Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)}"
|
|
f" ({100.0 * batch_idx / len(train_loader):.0f}%)]\tLoss: {loss.item():.6f}"
|
|
)
|
|
if hparams.dry_run:
|
|
break
|
|
scheduler.step()
|
|
|
|
# TESTING LOOP
|
|
model.eval()
|
|
test_loss = 0
|
|
correct = 0
|
|
with torch.no_grad():
|
|
for data, target in test_loader:
|
|
data, target = data.to(device), target.to(device)
|
|
output = model(data)
|
|
test_loss += F.nll_loss(output, target, reduction="sum").item() # sum up batch loss
|
|
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
|
|
correct += pred.eq(target.view_as(pred)).sum().item()
|
|
if hparams.dry_run:
|
|
break
|
|
|
|
test_loss /= len(test_loader.dataset)
|
|
|
|
print(
|
|
f"\nTest set: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(test_loader.dataset)}"
|
|
f" ({100.0 * correct / len(test_loader.dataset):.0f}%)\n"
|
|
)
|
|
|
|
if hparams.dry_run:
|
|
break
|
|
|
|
if hparams.save_model:
|
|
torch.save(model.state_dict(), "mnist_cnn.pt")
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="PyTorch MNIST Example")
|
|
parser.add_argument(
|
|
"--batch-size", type=int, default=64, metavar="N", help="input batch size for training (default: 64)"
|
|
)
|
|
parser.add_argument("--epochs", type=int, default=14, metavar="N", help="number of epochs to train (default: 14)")
|
|
parser.add_argument("--lr", type=float, default=1.0, metavar="LR", help="learning rate (default: 1.0)")
|
|
parser.add_argument("--gamma", type=float, default=0.7, metavar="M", help="Learning rate step gamma (default: 0.7)")
|
|
parser.add_argument("--dry-run", action="store_true", default=False, help="quickly check a single pass")
|
|
parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)")
|
|
parser.add_argument(
|
|
"--log-interval",
|
|
type=int,
|
|
default=10,
|
|
metavar="N",
|
|
help="how many batches to wait before logging training status",
|
|
)
|
|
parser.add_argument("--save-model", action="store_true", default=False, help="For Saving the current Model")
|
|
hparams = parser.parse_args()
|
|
run(hparams)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|