# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from os import path import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision.transforms as T from torch.optim.lr_scheduler import StepLR from torchvision.datasets import MNIST DATASETS_PATH = path.join(path.dirname(__file__), "..", "..", "..", "Datasets") # Credit to the PyTorch team # Taken from https://github.com/pytorch/examples/blob/master/mnist/main.py and slightly adapted. class Net(nn.Module): def __init__(self) -> None: super().__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout(0.25) self.dropout2 = nn.Dropout(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) return F.log_softmax(x, dim=1) def run(hparams): torch.manual_seed(hparams.seed) use_cuda = torch.cuda.is_available() use_mps = torch.backends.mps.is_available() if use_cuda: device = torch.device("cuda") elif use_mps: device = torch.device("mps") else: device = torch.device("cpu") transform = T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))]) train_dataset = MNIST(DATASETS_PATH, train=True, download=True, transform=transform) test_dataset = MNIST(DATASETS_PATH, train=False, transform=transform) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=hparams.batch_size, ) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=hparams.batch_size) model = Net().to(device) optimizer = optim.Adadelta(model.parameters(), lr=hparams.lr) scheduler = StepLR(optimizer, step_size=1, gamma=hparams.gamma) # EPOCH LOOP for epoch in range(1, hparams.epochs + 1): # TRAINING LOOP model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if (batch_idx == 0) or ((batch_idx + 1) % hparams.log_interval == 0): print( f"Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)}" f" ({100.0 * batch_idx / len(train_loader):.0f}%)]\tLoss: {loss.item():.6f}" ) if hparams.dry_run: break scheduler.step() # TESTING LOOP model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction="sum").item() # sum up batch loss pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() if hparams.dry_run: break test_loss /= len(test_loader.dataset) print( f"\nTest set: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(test_loader.dataset)}" f" ({100.0 * correct / len(test_loader.dataset):.0f}%)\n" ) if hparams.dry_run: break if hparams.save_model: torch.save(model.state_dict(), "mnist_cnn.pt") def main(): parser = argparse.ArgumentParser(description="PyTorch MNIST Example") parser.add_argument( "--batch-size", type=int, default=64, metavar="N", help="input batch size for training (default: 64)" ) parser.add_argument("--epochs", type=int, default=14, metavar="N", help="number of epochs to train (default: 14)") parser.add_argument("--lr", type=float, default=1.0, metavar="LR", help="learning rate (default: 1.0)") parser.add_argument("--gamma", type=float, default=0.7, metavar="M", help="Learning rate step gamma (default: 0.7)") parser.add_argument("--dry-run", action="store_true", default=False, help="quickly check a single pass") parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)") parser.add_argument( "--log-interval", type=int, default=10, metavar="N", help="how many batches to wait before logging training status", ) parser.add_argument("--save-model", action="store_true", default=False, help="For Saving the current Model") hparams = parser.parse_args() run(hparams) if __name__ == "__main__": main()