458 lines
12 KiB
Python
458 lines
12 KiB
Python
import os
|
|
import pickle
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
import tests.models.utils as tutils
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.loggers import (
|
|
LightningLoggerBase,
|
|
rank_zero_only,
|
|
TensorBoardLogger,
|
|
MLFlowLogger,
|
|
CometLogger,
|
|
WandbLogger,
|
|
NeptuneLogger
|
|
)
|
|
from tests.models import LightningTestModel
|
|
|
|
|
|
def test_testtube_logger(tmpdir):
|
|
"""Verify that basic functionality of test tube logger works."""
|
|
tutils.reset_seed()
|
|
hparams = tutils.get_hparams()
|
|
model = LightningTestModel(hparams)
|
|
|
|
logger = tutils.get_test_tube_logger(tmpdir, False)
|
|
|
|
trainer_options = dict(
|
|
default_save_path=tmpdir,
|
|
max_epochs=1,
|
|
train_percent_check=0.05,
|
|
logger=logger
|
|
)
|
|
|
|
trainer = Trainer(**trainer_options)
|
|
result = trainer.fit(model)
|
|
|
|
assert result == 1, "Training failed"
|
|
|
|
|
|
def test_testtube_pickle(tmpdir):
|
|
"""Verify that pickling a trainer containing a test tube logger works."""
|
|
tutils.reset_seed()
|
|
|
|
hparams = tutils.get_hparams()
|
|
model = LightningTestModel(hparams)
|
|
|
|
logger = tutils.get_test_tube_logger(tmpdir, False)
|
|
logger.log_hyperparams(hparams)
|
|
logger.save()
|
|
|
|
trainer_options = dict(
|
|
default_save_path=tmpdir,
|
|
max_epochs=1,
|
|
train_percent_check=0.05,
|
|
logger=logger
|
|
)
|
|
|
|
trainer = Trainer(**trainer_options)
|
|
pkl_bytes = pickle.dumps(trainer)
|
|
trainer2 = pickle.loads(pkl_bytes)
|
|
trainer2.logger.log_metrics({"acc": 1.0})
|
|
|
|
|
|
def test_mlflow_logger(tmpdir):
|
|
"""Verify that basic functionality of mlflow logger works."""
|
|
tutils.reset_seed()
|
|
|
|
hparams = tutils.get_hparams()
|
|
model = LightningTestModel(hparams)
|
|
|
|
mlflow_dir = os.path.join(tmpdir, "mlruns")
|
|
logger = MLFlowLogger("test", tracking_uri=f"file:{os.sep * 2}{mlflow_dir}")
|
|
|
|
trainer_options = dict(
|
|
default_save_path=tmpdir,
|
|
max_epochs=1,
|
|
train_percent_check=0.05,
|
|
logger=logger
|
|
)
|
|
trainer = Trainer(**trainer_options)
|
|
result = trainer.fit(model)
|
|
|
|
print('result finished')
|
|
assert result == 1, "Training failed"
|
|
|
|
|
|
def test_mlflow_pickle(tmpdir):
|
|
"""Verify that pickling trainer with mlflow logger works."""
|
|
tutils.reset_seed()
|
|
|
|
# hparams = tutils.get_hparams()
|
|
# model = LightningTestModel(hparams)
|
|
|
|
mlflow_dir = os.path.join(tmpdir, "mlruns")
|
|
logger = MLFlowLogger("test", tracking_uri=f"file:{os.sep * 2}{mlflow_dir}")
|
|
trainer_options = dict(
|
|
default_save_path=tmpdir,
|
|
max_epochs=1,
|
|
logger=logger
|
|
)
|
|
|
|
trainer = Trainer(**trainer_options)
|
|
pkl_bytes = pickle.dumps(trainer)
|
|
trainer2 = pickle.loads(pkl_bytes)
|
|
trainer2.logger.log_metrics({"acc": 1.0})
|
|
|
|
|
|
def test_comet_logger(tmpdir, monkeypatch):
|
|
"""Verify that basic functionality of Comet.ml logger works."""
|
|
|
|
# prevent comet logger from trying to print at exit, since
|
|
# pytest's stdout/stderr redirection breaks it
|
|
import atexit
|
|
monkeypatch.setattr(atexit, "register", lambda _: None)
|
|
|
|
tutils.reset_seed()
|
|
|
|
hparams = tutils.get_hparams()
|
|
model = LightningTestModel(hparams)
|
|
|
|
comet_dir = os.path.join(tmpdir, "cometruns")
|
|
|
|
# We test CometLogger in offline mode with local saves
|
|
logger = CometLogger(
|
|
save_dir=comet_dir,
|
|
project_name="general",
|
|
workspace="dummy-test",
|
|
)
|
|
|
|
trainer_options = dict(
|
|
default_save_path=tmpdir,
|
|
max_epochs=1,
|
|
train_percent_check=0.05,
|
|
logger=logger
|
|
)
|
|
|
|
trainer = Trainer(**trainer_options)
|
|
result = trainer.fit(model)
|
|
|
|
print('result finished')
|
|
assert result == 1, "Training failed"
|
|
|
|
|
|
def test_comet_pickle(tmpdir, monkeypatch):
|
|
"""Verify that pickling trainer with comet logger works."""
|
|
|
|
# prevent comet logger from trying to print at exit, since
|
|
# pytest's stdout/stderr redirection breaks it
|
|
import atexit
|
|
monkeypatch.setattr(atexit, "register", lambda _: None)
|
|
|
|
tutils.reset_seed()
|
|
|
|
# hparams = tutils.get_hparams()
|
|
# model = LightningTestModel(hparams)
|
|
|
|
comet_dir = os.path.join(tmpdir, "cometruns")
|
|
|
|
# We test CometLogger in offline mode with local saves
|
|
logger = CometLogger(
|
|
save_dir=comet_dir,
|
|
project_name="general",
|
|
workspace="dummy-test",
|
|
)
|
|
|
|
trainer_options = dict(
|
|
default_save_path=tmpdir,
|
|
max_epochs=1,
|
|
logger=logger
|
|
)
|
|
|
|
trainer = Trainer(**trainer_options)
|
|
pkl_bytes = pickle.dumps(trainer)
|
|
trainer2 = pickle.loads(pkl_bytes)
|
|
trainer2.logger.log_metrics({"acc": 1.0})
|
|
|
|
|
|
def test_wandb_logger(tmpdir):
|
|
"""Verify that basic functionality of wandb logger works."""
|
|
tutils.reset_seed()
|
|
|
|
wandb_dir = os.path.join(tmpdir, "wandb")
|
|
_ = WandbLogger(save_dir=wandb_dir, anonymous=True, offline=True)
|
|
|
|
|
|
def test_wandb_pickle(tmpdir):
|
|
"""Verify that pickling trainer with wandb logger works."""
|
|
tutils.reset_seed()
|
|
|
|
wandb_dir = str(tmpdir)
|
|
logger = WandbLogger(save_dir=wandb_dir, anonymous=True, offline=True)
|
|
assert logger is not None
|
|
|
|
|
|
def test_neptune_logger(tmpdir):
|
|
"""Verify that basic functionality of neptune logger works."""
|
|
tutils.reset_seed()
|
|
|
|
hparams = tutils.get_hparams()
|
|
model = LightningTestModel(hparams)
|
|
logger = NeptuneLogger(offline_mode=True)
|
|
|
|
trainer_options = dict(
|
|
default_save_path=tmpdir,
|
|
max_epochs=1,
|
|
train_percent_check=0.05,
|
|
logger=logger
|
|
)
|
|
trainer = Trainer(**trainer_options)
|
|
result = trainer.fit(model)
|
|
|
|
print('result finished')
|
|
assert result == 1, "Training failed"
|
|
|
|
|
|
def test_neptune_pickle(tmpdir):
|
|
"""Verify that pickling trainer with neptune logger works."""
|
|
tutils.reset_seed()
|
|
|
|
# hparams = tutils.get_hparams()
|
|
# model = LightningTestModel(hparams)
|
|
|
|
logger = NeptuneLogger(offline_mode=True)
|
|
|
|
trainer_options = dict(
|
|
default_save_path=tmpdir,
|
|
max_epochs=1,
|
|
logger=logger
|
|
)
|
|
|
|
trainer = Trainer(**trainer_options)
|
|
pkl_bytes = pickle.dumps(trainer)
|
|
trainer2 = pickle.loads(pkl_bytes)
|
|
trainer2.logger.log_metrics({"acc": 1.0})
|
|
|
|
|
|
def test_tensorboard_logger(tmpdir):
|
|
"""Verify that basic functionality of Tensorboard logger works."""
|
|
|
|
hparams = tutils.get_hparams()
|
|
model = LightningTestModel(hparams)
|
|
|
|
logger = TensorBoardLogger(save_dir=tmpdir, name="tensorboard_logger_test")
|
|
|
|
trainer_options = dict(max_epochs=1, train_percent_check=0.01, logger=logger)
|
|
|
|
trainer = Trainer(**trainer_options)
|
|
result = trainer.fit(model)
|
|
|
|
print("result finished")
|
|
assert result == 1, "Training failed"
|
|
|
|
|
|
def test_tensorboard_pickle(tmpdir):
|
|
"""Verify that pickling trainer with Tensorboard logger works."""
|
|
|
|
# hparams = tutils.get_hparams()
|
|
# model = LightningTestModel(hparams)
|
|
|
|
logger = TensorBoardLogger(save_dir=tmpdir, name="tensorboard_pickle_test")
|
|
|
|
trainer_options = dict(max_epochs=1, logger=logger)
|
|
|
|
trainer = Trainer(**trainer_options)
|
|
pkl_bytes = pickle.dumps(trainer)
|
|
trainer2 = pickle.loads(pkl_bytes)
|
|
trainer2.logger.log_metrics({"acc": 1.0})
|
|
|
|
|
|
def test_tensorboard_automatic_versioning(tmpdir):
|
|
"""Verify that automatic versioning works"""
|
|
|
|
root_dir = tmpdir.mkdir("tb_versioning")
|
|
root_dir.mkdir("version_0")
|
|
root_dir.mkdir("version_1")
|
|
|
|
logger = TensorBoardLogger(save_dir=tmpdir, name="tb_versioning")
|
|
|
|
assert logger.version == 2
|
|
|
|
|
|
def test_tensorboard_manual_versioning(tmpdir):
|
|
"""Verify that manual versioning works"""
|
|
|
|
root_dir = tmpdir.mkdir("tb_versioning")
|
|
root_dir.mkdir("version_0")
|
|
root_dir.mkdir("version_1")
|
|
root_dir.mkdir("version_2")
|
|
|
|
logger = TensorBoardLogger(save_dir=tmpdir, name="tb_versioning", version=1)
|
|
|
|
assert logger.version == 1
|
|
|
|
|
|
def test_tensorboard_named_version(tmpdir):
|
|
"""Verify that manual versioning works for string versions, e.g. '2020-02-05-162402' """
|
|
|
|
tmpdir.mkdir("tb_versioning")
|
|
expected_version = "2020-02-05-162402"
|
|
|
|
logger = TensorBoardLogger(save_dir=tmpdir, name="tb_versioning", version=expected_version)
|
|
logger.log_hyperparams({"a": 1, "b": 2}) # Force data to be written
|
|
|
|
assert logger.version == expected_version
|
|
# Could also test existence of the directory but this fails in the "minimum requirements" test setup
|
|
|
|
|
|
@pytest.mark.parametrize("step_idx", [10, None])
|
|
def test_tensorboard_log_metrics(tmpdir, step_idx):
|
|
logger = TensorBoardLogger(tmpdir)
|
|
metrics = {
|
|
"float": 0.3,
|
|
"int": 1,
|
|
"FloatTensor": torch.tensor(0.1),
|
|
"IntTensor": torch.tensor(1)
|
|
}
|
|
logger.log_metrics(metrics, step_idx)
|
|
|
|
|
|
def test_tensorboard_log_hyperparams(tmpdir):
|
|
logger = TensorBoardLogger(tmpdir)
|
|
hparams = {
|
|
"float": 0.3,
|
|
"int": 1,
|
|
"string": "abc",
|
|
"bool": True
|
|
}
|
|
logger.log_hyperparams(hparams)
|
|
|
|
|
|
class CustomLogger(LightningLoggerBase):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.hparams_logged = None
|
|
self.metrics_logged = None
|
|
self.finalized = False
|
|
|
|
@property
|
|
def experiment(self):
|
|
return 'test'
|
|
|
|
@rank_zero_only
|
|
def log_hyperparams(self, params):
|
|
self.hparams_logged = params
|
|
|
|
@rank_zero_only
|
|
def log_metrics(self, metrics, step):
|
|
self.metrics_logged = metrics
|
|
|
|
@rank_zero_only
|
|
def finalize(self, status):
|
|
self.finalized_status = status
|
|
|
|
@property
|
|
def name(self):
|
|
return "name"
|
|
|
|
@property
|
|
def version(self):
|
|
return "1"
|
|
|
|
|
|
def test_custom_logger(tmpdir):
|
|
hparams = tutils.get_hparams()
|
|
model = LightningTestModel(hparams)
|
|
|
|
logger = CustomLogger()
|
|
|
|
trainer_options = dict(
|
|
max_epochs=1,
|
|
train_percent_check=0.05,
|
|
logger=logger,
|
|
default_save_path=tmpdir
|
|
)
|
|
|
|
trainer = Trainer(**trainer_options)
|
|
result = trainer.fit(model)
|
|
assert result == 1, "Training failed"
|
|
assert logger.hparams_logged == hparams
|
|
assert logger.metrics_logged != {}
|
|
assert logger.finalized_status == "success"
|
|
|
|
|
|
def test_multiple_loggers(tmpdir):
|
|
hparams = tutils.get_hparams()
|
|
model = LightningTestModel(hparams)
|
|
|
|
logger1 = CustomLogger()
|
|
logger2 = CustomLogger()
|
|
|
|
trainer_options = dict(
|
|
max_epochs=1,
|
|
train_percent_check=0.05,
|
|
logger=[logger1, logger2],
|
|
default_save_path=tmpdir
|
|
)
|
|
|
|
trainer = Trainer(**trainer_options)
|
|
result = trainer.fit(model)
|
|
assert result == 1, "Training failed"
|
|
|
|
assert logger1.hparams_logged == hparams
|
|
assert logger1.metrics_logged != {}
|
|
assert logger1.finalized_status == "success"
|
|
|
|
assert logger2.hparams_logged == hparams
|
|
assert logger2.metrics_logged != {}
|
|
assert logger2.finalized_status == "success"
|
|
|
|
|
|
def test_multiple_loggers_pickle(tmpdir):
|
|
"""Verify that pickling trainer with multiple loggers works."""
|
|
|
|
logger1 = CustomLogger()
|
|
logger2 = CustomLogger()
|
|
|
|
trainer_options = dict(max_epochs=1, logger=[logger1, logger2])
|
|
|
|
trainer = Trainer(**trainer_options)
|
|
pkl_bytes = pickle.dumps(trainer)
|
|
trainer2 = pickle.loads(pkl_bytes)
|
|
trainer2.logger.log_metrics({"acc": 1.0}, 0)
|
|
|
|
assert logger1.metrics_logged != {}
|
|
assert logger2.metrics_logged != {}
|
|
|
|
|
|
def test_adding_step_key(tmpdir):
|
|
logged_step = 0
|
|
|
|
def _validation_end(outputs):
|
|
nonlocal logged_step
|
|
logged_step += 1
|
|
return {"log": {"step": logged_step, "val_acc": logged_step / 10}}
|
|
|
|
def _log_metrics_decorator(log_metrics_fn):
|
|
def decorated(metrics, step):
|
|
if "val_acc" in metrics:
|
|
assert step == logged_step
|
|
return log_metrics_fn(metrics, step)
|
|
|
|
return decorated
|
|
|
|
model, hparams = tutils.get_model()
|
|
model.validation_end = _validation_end
|
|
trainer_options = dict(
|
|
max_epochs=4,
|
|
default_save_path=tmpdir,
|
|
train_percent_check=0.001,
|
|
val_percent_check=0.01,
|
|
num_sanity_val_steps=0
|
|
)
|
|
trainer = Trainer(**trainer_options)
|
|
trainer.logger.log_metrics = _log_metrics_decorator(trainer.logger.log_metrics)
|
|
trainer.fit(model)
|