import os import pickle import pytest import torch import tests.models.utils as tutils from pytorch_lightning import Trainer from pytorch_lightning.loggers import ( LightningLoggerBase, rank_zero_only, TensorBoardLogger, MLFlowLogger, CometLogger, WandbLogger, NeptuneLogger ) from tests.models import LightningTestModel def test_testtube_logger(tmpdir): """Verify that basic functionality of test tube logger works.""" tutils.reset_seed() hparams = tutils.get_hparams() model = LightningTestModel(hparams) logger = tutils.get_test_tube_logger(tmpdir, False) trainer_options = dict( default_save_path=tmpdir, max_epochs=1, train_percent_check=0.05, logger=logger ) trainer = Trainer(**trainer_options) result = trainer.fit(model) assert result == 1, "Training failed" def test_testtube_pickle(tmpdir): """Verify that pickling a trainer containing a test tube logger works.""" tutils.reset_seed() hparams = tutils.get_hparams() model = LightningTestModel(hparams) logger = tutils.get_test_tube_logger(tmpdir, False) logger.log_hyperparams(hparams) logger.save() trainer_options = dict( default_save_path=tmpdir, max_epochs=1, train_percent_check=0.05, logger=logger ) trainer = Trainer(**trainer_options) pkl_bytes = pickle.dumps(trainer) trainer2 = pickle.loads(pkl_bytes) trainer2.logger.log_metrics({"acc": 1.0}) def test_mlflow_logger(tmpdir): """Verify that basic functionality of mlflow logger works.""" tutils.reset_seed() hparams = tutils.get_hparams() model = LightningTestModel(hparams) mlflow_dir = os.path.join(tmpdir, "mlruns") logger = MLFlowLogger("test", tracking_uri=f"file:{os.sep * 2}{mlflow_dir}") trainer_options = dict( default_save_path=tmpdir, max_epochs=1, train_percent_check=0.05, logger=logger ) trainer = Trainer(**trainer_options) result = trainer.fit(model) print('result finished') assert result == 1, "Training failed" def test_mlflow_pickle(tmpdir): """Verify that pickling trainer with mlflow logger works.""" tutils.reset_seed() # hparams = tutils.get_hparams() # model = LightningTestModel(hparams) mlflow_dir = os.path.join(tmpdir, "mlruns") logger = MLFlowLogger("test", tracking_uri=f"file:{os.sep * 2}{mlflow_dir}") trainer_options = dict( default_save_path=tmpdir, max_epochs=1, logger=logger ) trainer = Trainer(**trainer_options) pkl_bytes = pickle.dumps(trainer) trainer2 = pickle.loads(pkl_bytes) trainer2.logger.log_metrics({"acc": 1.0}) def test_comet_logger(tmpdir, monkeypatch): """Verify that basic functionality of Comet.ml logger works.""" # prevent comet logger from trying to print at exit, since # pytest's stdout/stderr redirection breaks it import atexit monkeypatch.setattr(atexit, "register", lambda _: None) tutils.reset_seed() hparams = tutils.get_hparams() model = LightningTestModel(hparams) comet_dir = os.path.join(tmpdir, "cometruns") # We test CometLogger in offline mode with local saves logger = CometLogger( save_dir=comet_dir, project_name="general", workspace="dummy-test", ) trainer_options = dict( default_save_path=tmpdir, max_epochs=1, train_percent_check=0.05, logger=logger ) trainer = Trainer(**trainer_options) result = trainer.fit(model) print('result finished') assert result == 1, "Training failed" def test_comet_pickle(tmpdir, monkeypatch): """Verify that pickling trainer with comet logger works.""" # prevent comet logger from trying to print at exit, since # pytest's stdout/stderr redirection breaks it import atexit monkeypatch.setattr(atexit, "register", lambda _: None) tutils.reset_seed() # hparams = tutils.get_hparams() # model = LightningTestModel(hparams) comet_dir = os.path.join(tmpdir, "cometruns") # We test CometLogger in offline mode with local saves logger = CometLogger( save_dir=comet_dir, project_name="general", workspace="dummy-test", ) trainer_options = dict( default_save_path=tmpdir, max_epochs=1, logger=logger ) trainer = Trainer(**trainer_options) pkl_bytes = pickle.dumps(trainer) trainer2 = pickle.loads(pkl_bytes) trainer2.logger.log_metrics({"acc": 1.0}) def test_wandb_logger(tmpdir): """Verify that basic functionality of wandb logger works.""" tutils.reset_seed() wandb_dir = os.path.join(tmpdir, "wandb") _ = WandbLogger(save_dir=wandb_dir, anonymous=True, offline=True) def test_wandb_pickle(tmpdir): """Verify that pickling trainer with wandb logger works.""" tutils.reset_seed() wandb_dir = str(tmpdir) logger = WandbLogger(save_dir=wandb_dir, anonymous=True, offline=True) assert logger is not None def test_neptune_logger(tmpdir): """Verify that basic functionality of neptune logger works.""" tutils.reset_seed() hparams = tutils.get_hparams() model = LightningTestModel(hparams) logger = NeptuneLogger(offline_mode=True) trainer_options = dict( default_save_path=tmpdir, max_epochs=1, train_percent_check=0.05, logger=logger ) trainer = Trainer(**trainer_options) result = trainer.fit(model) print('result finished') assert result == 1, "Training failed" def test_neptune_pickle(tmpdir): """Verify that pickling trainer with neptune logger works.""" tutils.reset_seed() # hparams = tutils.get_hparams() # model = LightningTestModel(hparams) logger = NeptuneLogger(offline_mode=True) trainer_options = dict( default_save_path=tmpdir, max_epochs=1, logger=logger ) trainer = Trainer(**trainer_options) pkl_bytes = pickle.dumps(trainer) trainer2 = pickle.loads(pkl_bytes) trainer2.logger.log_metrics({"acc": 1.0}) def test_tensorboard_logger(tmpdir): """Verify that basic functionality of Tensorboard logger works.""" hparams = tutils.get_hparams() model = LightningTestModel(hparams) logger = TensorBoardLogger(save_dir=tmpdir, name="tensorboard_logger_test") trainer_options = dict(max_epochs=1, train_percent_check=0.01, logger=logger) trainer = Trainer(**trainer_options) result = trainer.fit(model) print("result finished") assert result == 1, "Training failed" def test_tensorboard_pickle(tmpdir): """Verify that pickling trainer with Tensorboard logger works.""" # hparams = tutils.get_hparams() # model = LightningTestModel(hparams) logger = TensorBoardLogger(save_dir=tmpdir, name="tensorboard_pickle_test") trainer_options = dict(max_epochs=1, logger=logger) trainer = Trainer(**trainer_options) pkl_bytes = pickle.dumps(trainer) trainer2 = pickle.loads(pkl_bytes) trainer2.logger.log_metrics({"acc": 1.0}) def test_tensorboard_automatic_versioning(tmpdir): """Verify that automatic versioning works""" root_dir = tmpdir.mkdir("tb_versioning") root_dir.mkdir("version_0") root_dir.mkdir("version_1") logger = TensorBoardLogger(save_dir=tmpdir, name="tb_versioning") assert logger.version == 2 def test_tensorboard_manual_versioning(tmpdir): """Verify that manual versioning works""" root_dir = tmpdir.mkdir("tb_versioning") root_dir.mkdir("version_0") root_dir.mkdir("version_1") root_dir.mkdir("version_2") logger = TensorBoardLogger(save_dir=tmpdir, name="tb_versioning", version=1) assert logger.version == 1 def test_tensorboard_named_version(tmpdir): """Verify that manual versioning works for string versions, e.g. '2020-02-05-162402' """ tmpdir.mkdir("tb_versioning") expected_version = "2020-02-05-162402" logger = TensorBoardLogger(save_dir=tmpdir, name="tb_versioning", version=expected_version) logger.log_hyperparams({"a": 1, "b": 2}) # Force data to be written assert logger.version == expected_version # Could also test existence of the directory but this fails in the "minimum requirements" test setup @pytest.mark.parametrize("step_idx", [10, None]) def test_tensorboard_log_metrics(tmpdir, step_idx): logger = TensorBoardLogger(tmpdir) metrics = { "float": 0.3, "int": 1, "FloatTensor": torch.tensor(0.1), "IntTensor": torch.tensor(1) } logger.log_metrics(metrics, step_idx) def test_tensorboard_log_hyperparams(tmpdir): logger = TensorBoardLogger(tmpdir) hparams = { "float": 0.3, "int": 1, "string": "abc", "bool": True } logger.log_hyperparams(hparams) class CustomLogger(LightningLoggerBase): def __init__(self): super().__init__() self.hparams_logged = None self.metrics_logged = None self.finalized = False @property def experiment(self): return 'test' @rank_zero_only def log_hyperparams(self, params): self.hparams_logged = params @rank_zero_only def log_metrics(self, metrics, step): self.metrics_logged = metrics @rank_zero_only def finalize(self, status): self.finalized_status = status @property def name(self): return "name" @property def version(self): return "1" def test_custom_logger(tmpdir): hparams = tutils.get_hparams() model = LightningTestModel(hparams) logger = CustomLogger() trainer_options = dict( max_epochs=1, train_percent_check=0.05, logger=logger, default_save_path=tmpdir ) trainer = Trainer(**trainer_options) result = trainer.fit(model) assert result == 1, "Training failed" assert logger.hparams_logged == hparams assert logger.metrics_logged != {} assert logger.finalized_status == "success" def test_multiple_loggers(tmpdir): hparams = tutils.get_hparams() model = LightningTestModel(hparams) logger1 = CustomLogger() logger2 = CustomLogger() trainer_options = dict( max_epochs=1, train_percent_check=0.05, logger=[logger1, logger2], default_save_path=tmpdir ) trainer = Trainer(**trainer_options) result = trainer.fit(model) assert result == 1, "Training failed" assert logger1.hparams_logged == hparams assert logger1.metrics_logged != {} assert logger1.finalized_status == "success" assert logger2.hparams_logged == hparams assert logger2.metrics_logged != {} assert logger2.finalized_status == "success" def test_multiple_loggers_pickle(tmpdir): """Verify that pickling trainer with multiple loggers works.""" logger1 = CustomLogger() logger2 = CustomLogger() trainer_options = dict(max_epochs=1, logger=[logger1, logger2]) trainer = Trainer(**trainer_options) pkl_bytes = pickle.dumps(trainer) trainer2 = pickle.loads(pkl_bytes) trainer2.logger.log_metrics({"acc": 1.0}, 0) assert logger1.metrics_logged != {} assert logger2.metrics_logged != {} def test_adding_step_key(tmpdir): logged_step = 0 def _validation_end(outputs): nonlocal logged_step logged_step += 1 return {"log": {"step": logged_step, "val_acc": logged_step / 10}} def _log_metrics_decorator(log_metrics_fn): def decorated(metrics, step): if "val_acc" in metrics: assert step == logged_step return log_metrics_fn(metrics, step) return decorated model, hparams = tutils.get_model() model.validation_end = _validation_end trainer_options = dict( max_epochs=4, default_save_path=tmpdir, train_percent_check=0.001, val_percent_check=0.01, num_sanity_val_steps=0 ) trainer = Trainer(**trainer_options) trainer.logger.log_metrics = _log_metrics_decorator(trainer.logger.log_metrics) trainer.fit(model)