760 lines
27 KiB
Python
760 lines
27 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import math
|
|
import os
|
|
import pickle
|
|
import sys
|
|
from collections import defaultdict
|
|
from typing import Union
|
|
from unittest import mock
|
|
from unittest.mock import ANY, call, PropertyMock
|
|
|
|
import pytest
|
|
import torch
|
|
from torch.utils.data.dataloader import DataLoader
|
|
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.callbacks import ModelCheckpoint, ProgressBarBase, TQDMProgressBar
|
|
from pytorch_lightning.callbacks.progress.tqdm_progress import Tqdm
|
|
from pytorch_lightning.core.lightning import LightningModule
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from tests.helpers.boring_model import BoringModel, RandomDataset
|
|
from tests.helpers.runif import RunIf
|
|
|
|
|
|
class MockTqdm(Tqdm):
|
|
def __init__(self, *args, **kwargs):
|
|
self.n_values = []
|
|
self.total_values = []
|
|
self.descriptions = []
|
|
super().__init__(*args, **kwargs)
|
|
self.__n = 0
|
|
self.__total = 0
|
|
# again to reset additions from `super().__init__`
|
|
self.n_values = []
|
|
self.total_values = []
|
|
self.descriptions = []
|
|
|
|
@property
|
|
def n(self):
|
|
return self.__n
|
|
|
|
@n.setter
|
|
def n(self, value):
|
|
self.__n = value
|
|
|
|
# track the changes in the `n` value
|
|
if not len(self.n_values) or value != self.n_values[-1]:
|
|
self.n_values.append(value)
|
|
|
|
@property
|
|
def total(self):
|
|
return self.__total
|
|
|
|
@total.setter
|
|
def total(self, value):
|
|
self.__total = value
|
|
self.total_values.append(value)
|
|
|
|
def set_description(self, *args, **kwargs):
|
|
super().set_description(*args, **kwargs)
|
|
self.descriptions.append(self.desc)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"kwargs",
|
|
[
|
|
# won't print but is still set
|
|
{"callbacks": TQDMProgressBar(refresh_rate=0)},
|
|
{"callbacks": TQDMProgressBar()},
|
|
{"progress_bar_refresh_rate": 1},
|
|
],
|
|
)
|
|
def test_tqdm_progress_bar_on(tmpdir, kwargs):
|
|
"""Test different ways the progress bar can be turned on."""
|
|
if "progress_bar_refresh_rate" in kwargs:
|
|
with pytest.deprecated_call(match=r"progress_bar_refresh_rate=.*` is deprecated"):
|
|
trainer = Trainer(default_root_dir=tmpdir, **kwargs)
|
|
else:
|
|
trainer = Trainer(default_root_dir=tmpdir, **kwargs)
|
|
|
|
progress_bars = [c for c in trainer.callbacks if isinstance(c, ProgressBarBase)]
|
|
assert len(progress_bars) == 1
|
|
assert progress_bars[0] is trainer.progress_bar_callback
|
|
|
|
|
|
@pytest.mark.parametrize("kwargs", [{"enable_progress_bar": False}, {"progress_bar_refresh_rate": 0}])
|
|
def test_tqdm_progress_bar_off(tmpdir, kwargs):
|
|
"""Test different ways the progress bar can be turned off."""
|
|
if "progress_bar_refresh_rate" in kwargs:
|
|
pytest.deprecated_call(match=r"progress_bar_refresh_rate=.*` is deprecated").__enter__()
|
|
trainer = Trainer(default_root_dir=tmpdir, **kwargs)
|
|
progress_bars = [c for c in trainer.callbacks if isinstance(c, ProgressBarBase)]
|
|
assert not len(progress_bars)
|
|
|
|
|
|
def test_tqdm_progress_bar_misconfiguration():
|
|
"""Test that Trainer doesn't accept multiple progress bars."""
|
|
# Trainer supports only a single progress bar callback at the moment
|
|
callbacks = [TQDMProgressBar(), TQDMProgressBar(), ModelCheckpoint(dirpath="../trainer")]
|
|
with pytest.raises(MisconfigurationException, match=r"^You added multiple progress bar callbacks"):
|
|
Trainer(callbacks=callbacks)
|
|
|
|
with pytest.raises(MisconfigurationException, match=r"enable_progress_bar=False` but found `TQDMProgressBar"):
|
|
Trainer(callbacks=TQDMProgressBar(), enable_progress_bar=False)
|
|
|
|
|
|
@pytest.mark.parametrize("num_dl", [1, 2])
|
|
def test_tqdm_progress_bar_totals(tmpdir, num_dl):
|
|
"""Test that the progress finishes with the correct total steps processed."""
|
|
|
|
class CustomModel(BoringModel):
|
|
def _get_dataloaders(self):
|
|
dls = [DataLoader(RandomDataset(32, 64)), DataLoader(RandomDataset(32, 64))]
|
|
return dls[0] if num_dl == 1 else dls
|
|
|
|
def val_dataloader(self):
|
|
return self._get_dataloaders()
|
|
|
|
def test_dataloader(self):
|
|
return self._get_dataloaders()
|
|
|
|
def predict_dataloader(self):
|
|
return self._get_dataloaders()
|
|
|
|
def validation_step(self, batch, batch_idx, dataloader_idx=None):
|
|
return
|
|
|
|
def test_step(self, batch, batch_idx, dataloader_idx=None):
|
|
return
|
|
|
|
def predict_step(self, batch, batch_idx, dataloader_idx=None):
|
|
return
|
|
|
|
model = CustomModel()
|
|
model.validation_epoch_end = None
|
|
model.test_epoch_end = None
|
|
|
|
# check the sanity dataloaders
|
|
num_sanity_val_steps = 4
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir, max_epochs=1, limit_train_batches=0, num_sanity_val_steps=num_sanity_val_steps
|
|
)
|
|
pbar = trainer.progress_bar_callback
|
|
with mock.patch("pytorch_lightning.callbacks.progress.tqdm_progress.Tqdm", MockTqdm):
|
|
trainer.fit(model)
|
|
|
|
expected_sanity_steps = [num_sanity_val_steps] * num_dl
|
|
assert not pbar.val_progress_bar.leave
|
|
assert trainer.num_sanity_val_batches == expected_sanity_steps
|
|
assert pbar.val_progress_bar.total_values == expected_sanity_steps
|
|
assert pbar.val_progress_bar.n_values == list(range(num_sanity_val_steps + 1)) * num_dl
|
|
assert pbar.val_progress_bar.descriptions == [f"Sanity Checking DataLoader {i}: " for i in range(num_dl)]
|
|
|
|
# fit
|
|
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
|
|
pbar = trainer.progress_bar_callback
|
|
with mock.patch("pytorch_lightning.callbacks.progress.tqdm_progress.Tqdm", MockTqdm):
|
|
trainer.fit(model)
|
|
|
|
n = trainer.num_training_batches
|
|
m = trainer.num_val_batches
|
|
assert len(trainer.train_dataloader) == n
|
|
# main progress bar should have reached the end (train batches + val batches)
|
|
assert pbar.main_progress_bar.total == n + sum(m)
|
|
assert pbar.main_progress_bar.n == n + sum(m)
|
|
assert pbar.main_progress_bar.leave
|
|
|
|
# check val progress bar total
|
|
assert pbar.val_progress_bar.total_values == m
|
|
assert pbar.val_progress_bar.n_values == list(range(m[0] + 1)) * num_dl
|
|
assert pbar.val_progress_bar.descriptions == [f"Validation DataLoader {i}: " for i in range(num_dl)]
|
|
assert not pbar.val_progress_bar.leave
|
|
|
|
# validate
|
|
with mock.patch("pytorch_lightning.callbacks.progress.tqdm_progress.Tqdm", MockTqdm):
|
|
trainer.validate(model)
|
|
assert trainer.num_val_batches == m
|
|
assert pbar.val_progress_bar.total_values == m
|
|
assert pbar.val_progress_bar.n_values == list(range(m[0] + 1)) * num_dl
|
|
assert pbar.val_progress_bar.descriptions == [f"Validation DataLoader {i}: " for i in range(num_dl)]
|
|
|
|
# test
|
|
with mock.patch("pytorch_lightning.callbacks.progress.tqdm_progress.Tqdm", MockTqdm):
|
|
trainer.test(model)
|
|
assert pbar.test_progress_bar.leave
|
|
k = trainer.num_test_batches
|
|
assert pbar.test_progress_bar.total_values == k
|
|
assert pbar.test_progress_bar.n_values == list(range(k[0] + 1)) * num_dl
|
|
assert pbar.test_progress_bar.descriptions == [f"Testing DataLoader {i}: " for i in range(num_dl)]
|
|
assert pbar.test_progress_bar.leave
|
|
|
|
# predict
|
|
with mock.patch("pytorch_lightning.callbacks.progress.tqdm_progress.Tqdm", MockTqdm):
|
|
trainer.predict(model)
|
|
assert pbar.predict_progress_bar.leave
|
|
k = trainer.num_predict_batches
|
|
assert pbar.predict_progress_bar.total_values == k
|
|
assert pbar.predict_progress_bar.n_values == list(range(k[0] + 1)) * num_dl
|
|
assert pbar.predict_progress_bar.descriptions == [f"Predicting DataLoader {i}: " for i in range(num_dl)]
|
|
assert pbar.predict_progress_bar.leave
|
|
|
|
|
|
def test_tqdm_progress_bar_fast_dev_run(tmpdir):
|
|
model = BoringModel()
|
|
|
|
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True)
|
|
|
|
trainer.fit(model)
|
|
|
|
pbar = trainer.progress_bar_callback
|
|
|
|
assert 1 == pbar.val_progress_bar.n
|
|
assert 1 == pbar.val_progress_bar.total
|
|
|
|
# the main progress bar should display 2 batches (1 train, 1 val)
|
|
assert 2 == pbar.main_progress_bar.total
|
|
assert 2 == pbar.main_progress_bar.n
|
|
|
|
trainer.validate(model)
|
|
|
|
# the validation progress bar should display 1 batch
|
|
assert 1 == pbar.val_progress_bar.total
|
|
assert 1 == pbar.val_progress_bar.n
|
|
|
|
trainer.test(model)
|
|
|
|
# the test progress bar should display 1 batch
|
|
assert 1 == pbar.test_progress_bar.total
|
|
assert 1 == pbar.test_progress_bar.n
|
|
|
|
|
|
@pytest.mark.parametrize("refresh_rate", [0, 1, 50])
|
|
def test_tqdm_progress_bar_progress_refresh(tmpdir, refresh_rate: int):
|
|
"""Test that the three progress bars get correctly updated when using different refresh rates."""
|
|
|
|
model = BoringModel()
|
|
|
|
class CurrentProgressBar(TQDMProgressBar):
|
|
|
|
train_batches_seen = 0
|
|
val_batches_seen = 0
|
|
test_batches_seen = 0
|
|
|
|
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
|
|
super().on_train_batch_end(trainer, pl_module, outputs, batch, batch_idx)
|
|
self.train_batches_seen += 1
|
|
|
|
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
|
|
super().on_validation_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx)
|
|
self.val_batches_seen += 1
|
|
|
|
def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
|
|
super().on_test_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx)
|
|
self.test_batches_seen += 1
|
|
|
|
pbar = CurrentProgressBar(refresh_rate=refresh_rate)
|
|
with pytest.deprecated_call(match=r"progress_bar_refresh_rate=101\)` is deprecated"):
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
callbacks=[pbar],
|
|
progress_bar_refresh_rate=101, # should not matter if custom callback provided
|
|
limit_train_batches=1.0,
|
|
num_sanity_val_steps=2,
|
|
max_epochs=3,
|
|
)
|
|
assert trainer.progress_bar_callback.refresh_rate == refresh_rate
|
|
|
|
trainer.fit(model)
|
|
assert (
|
|
pbar.train_batches_seen + pbar.val_batches_seen
|
|
== 3 * pbar.main_progress_bar.total + trainer.num_sanity_val_steps
|
|
)
|
|
assert pbar.test_batches_seen == 0
|
|
|
|
trainer.validate(model)
|
|
assert (
|
|
pbar.train_batches_seen + pbar.val_batches_seen
|
|
== 3 * pbar.main_progress_bar.total + pbar.val_progress_bar.total + trainer.num_sanity_val_steps
|
|
)
|
|
assert pbar.test_batches_seen == 0
|
|
|
|
trainer.test(model)
|
|
assert (
|
|
pbar.train_batches_seen + pbar.val_batches_seen
|
|
== 3 * pbar.main_progress_bar.total + pbar.val_progress_bar.total + trainer.num_sanity_val_steps
|
|
)
|
|
assert pbar.test_batches_seen == pbar.test_progress_bar.total
|
|
|
|
|
|
@pytest.mark.parametrize("limit_val_batches", (0, 5))
|
|
def test_num_sanity_val_steps_progress_bar(tmpdir, limit_val_batches: int):
|
|
"""Test val_progress_bar total with 'num_sanity_val_steps' Trainer argument."""
|
|
|
|
class CurrentProgressBar(TQDMProgressBar):
|
|
val_pbar_total = 0
|
|
sanity_pbar_total = 0
|
|
|
|
def on_sanity_check_end(self, *args):
|
|
self.sanity_pbar_total = self.val_progress_bar.total
|
|
super().on_sanity_check_end(*args)
|
|
|
|
def on_validation_epoch_end(self, *args):
|
|
self.val_pbar_total = self.val_progress_bar.total
|
|
super().on_validation_epoch_end(*args)
|
|
|
|
model = BoringModel()
|
|
pbar = CurrentProgressBar()
|
|
num_sanity_val_steps = 2
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
num_sanity_val_steps=num_sanity_val_steps,
|
|
limit_train_batches=1,
|
|
limit_val_batches=limit_val_batches,
|
|
callbacks=[pbar],
|
|
logger=False,
|
|
enable_checkpointing=False,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
assert pbar.sanity_pbar_total == min(num_sanity_val_steps, limit_val_batches)
|
|
assert pbar.val_pbar_total == limit_val_batches
|
|
|
|
|
|
def test_tqdm_progress_bar_default_value(tmpdir):
|
|
"""Test that a value of None defaults to refresh rate 1."""
|
|
trainer = Trainer(default_root_dir=tmpdir)
|
|
assert trainer.progress_bar_callback.refresh_rate == 1
|
|
|
|
|
|
@mock.patch.dict(os.environ, {"COLAB_GPU": "1"})
|
|
def test_tqdm_progress_bar_value_on_colab(tmpdir):
|
|
"""Test that Trainer will override the default in Google COLAB."""
|
|
trainer = Trainer(default_root_dir=tmpdir)
|
|
assert trainer.progress_bar_callback.refresh_rate == 20
|
|
|
|
trainer = Trainer(default_root_dir=tmpdir, callbacks=TQDMProgressBar())
|
|
assert trainer.progress_bar_callback.refresh_rate == 20
|
|
|
|
trainer = Trainer(default_root_dir=tmpdir, callbacks=TQDMProgressBar(refresh_rate=19))
|
|
assert trainer.progress_bar_callback.refresh_rate == 19
|
|
|
|
with pytest.deprecated_call(match=r"progress_bar_refresh_rate=19\)` is deprecated"):
|
|
trainer = Trainer(default_root_dir=tmpdir, progress_bar_refresh_rate=19)
|
|
assert trainer.progress_bar_callback.refresh_rate == 19
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"train_batches,val_batches,refresh_rate,train_updates,val_updates",
|
|
[
|
|
[2, 3, 1, [0, 1, 2, 3, 4, 5], [0, 1, 2, 3]],
|
|
[0, 0, 3, None, None],
|
|
[1, 0, 3, [0, 1], None],
|
|
[1, 1, 3, [0, 2], [0, 1]],
|
|
[5, 0, 3, [0, 3, 5], None],
|
|
[5, 2, 3, [0, 3, 6, 7], [0, 2]],
|
|
[5, 2, 6, [0, 6, 7], [0, 2]],
|
|
],
|
|
)
|
|
def test_main_progress_bar_update_amount(
|
|
tmpdir, train_batches: int, val_batches: int, refresh_rate: int, train_updates, val_updates
|
|
):
|
|
"""Test that the main progress updates with the correct amount together with the val progress.
|
|
|
|
At the end of the epoch, the progress must not overshoot if the number of steps is not divisible by the refresh
|
|
rate.
|
|
"""
|
|
model = BoringModel()
|
|
progress_bar = TQDMProgressBar(refresh_rate=refresh_rate)
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
limit_train_batches=train_batches,
|
|
limit_val_batches=val_batches,
|
|
callbacks=[progress_bar],
|
|
logger=False,
|
|
enable_checkpointing=False,
|
|
)
|
|
with mock.patch("pytorch_lightning.callbacks.progress.tqdm_progress.Tqdm", MockTqdm):
|
|
trainer.fit(model)
|
|
if train_batches > 0:
|
|
assert progress_bar.main_progress_bar.n_values == train_updates
|
|
if val_batches > 0:
|
|
assert progress_bar.val_progress_bar.n_values == val_updates
|
|
|
|
|
|
@pytest.mark.parametrize("test_batches,refresh_rate,updates", [(1, 3, [0, 1]), (3, 1, [0, 1, 2, 3]), (5, 3, [0, 3, 5])])
|
|
def test_test_progress_bar_update_amount(tmpdir, test_batches: int, refresh_rate: int, updates: list):
|
|
"""Test that test progress updates with the correct amount."""
|
|
model = BoringModel()
|
|
progress_bar = TQDMProgressBar(refresh_rate=refresh_rate)
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
limit_test_batches=test_batches,
|
|
callbacks=[progress_bar],
|
|
logger=False,
|
|
enable_checkpointing=False,
|
|
)
|
|
with mock.patch("pytorch_lightning.callbacks.progress.tqdm_progress.Tqdm", MockTqdm):
|
|
trainer.test(model)
|
|
assert progress_bar.test_progress_bar.n_values == updates
|
|
|
|
|
|
def test_tensor_to_float_conversion(tmpdir):
|
|
"""Check tensor gets converted to float."""
|
|
|
|
class TestModel(BoringModel):
|
|
def training_step(self, batch, batch_idx):
|
|
self.log("a", torch.tensor(0.123), prog_bar=True, on_epoch=False)
|
|
self.log("b", {"b1": torch.tensor([1])}, prog_bar=True, on_epoch=False)
|
|
self.log("c", {"c1": 2}, prog_bar=True, on_epoch=False)
|
|
return super().training_step(batch, batch_idx)
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir, max_epochs=1, limit_train_batches=2, logger=False, enable_checkpointing=False
|
|
)
|
|
trainer.fit(TestModel())
|
|
|
|
torch.testing.assert_allclose(trainer.progress_bar_metrics["a"], 0.123)
|
|
assert trainer.progress_bar_metrics["b"] == {"b1": 1.0}
|
|
assert trainer.progress_bar_metrics["c"] == {"c1": 2.0}
|
|
pbar = trainer.progress_bar_callback.main_progress_bar
|
|
actual = str(pbar.postfix)
|
|
assert actual.endswith("a=0.123, b={'b1': 1.0}, c={'c1': 2.0}"), actual
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"input_num, expected",
|
|
[
|
|
[1, "1"],
|
|
[1.0, "1.000"],
|
|
[0.1, "0.100"],
|
|
[1e-3, "0.001"],
|
|
[1e-5, "1e-5"],
|
|
["1.0", "1.000"],
|
|
["10000", "10000"],
|
|
["abc", "abc"],
|
|
],
|
|
)
|
|
def test_tqdm_format_num(input_num: Union[str, int, float], expected: str):
|
|
"""Check that the specialized tqdm.format_num appends 0 to floats and strings."""
|
|
assert Tqdm.format_num(input_num) == expected
|
|
|
|
|
|
class PrintModel(BoringModel):
|
|
def training_step(self, *args, **kwargs):
|
|
self.print("training_step", end="")
|
|
return super().training_step(*args, **kwargs)
|
|
|
|
def validation_step(self, *args, **kwargs):
|
|
self.print("validation_step", file=sys.stderr)
|
|
return super().validation_step(*args, **kwargs)
|
|
|
|
def test_step(self, *args, **kwargs):
|
|
self.print("test_step")
|
|
return super().test_step(*args, **kwargs)
|
|
|
|
def predict_step(self, *args, **kwargs):
|
|
self.print("predict_step")
|
|
return super().predict_step(*args, **kwargs)
|
|
|
|
|
|
@mock.patch("tqdm.tqdm.write")
|
|
def test_tqdm_progress_bar_print(tqdm_write, tmpdir):
|
|
"""Test that printing in the LightningModule redirects arguments to the progress bar."""
|
|
model = PrintModel()
|
|
bar = TQDMProgressBar()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
num_sanity_val_steps=0,
|
|
limit_train_batches=1,
|
|
limit_val_batches=1,
|
|
limit_test_batches=1,
|
|
limit_predict_batches=1,
|
|
max_steps=1,
|
|
callbacks=[bar],
|
|
)
|
|
trainer.fit(model)
|
|
trainer.test(model)
|
|
trainer.predict(model)
|
|
assert tqdm_write.call_args_list == [
|
|
call("training_step", end=""),
|
|
call("validation_step", file=sys.stderr),
|
|
call("test_step"),
|
|
call("predict_step"),
|
|
]
|
|
|
|
|
|
@mock.patch("tqdm.tqdm.write")
|
|
def test_tqdm_progress_bar_print_no_train(tqdm_write, tmpdir):
|
|
"""Test that printing in the LightningModule redirects arguments to the progress bar without training."""
|
|
model = PrintModel()
|
|
bar = TQDMProgressBar()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
num_sanity_val_steps=0,
|
|
limit_val_batches=1,
|
|
limit_test_batches=1,
|
|
limit_predict_batches=1,
|
|
max_steps=1,
|
|
callbacks=[bar],
|
|
)
|
|
|
|
trainer.validate(model)
|
|
trainer.test(model)
|
|
trainer.predict(model)
|
|
assert tqdm_write.call_args_list == [
|
|
call("validation_step", file=sys.stderr),
|
|
call("test_step"),
|
|
call("predict_step"),
|
|
]
|
|
|
|
|
|
@mock.patch("builtins.print")
|
|
@mock.patch("pytorch_lightning.callbacks.progress.tqdm_progress.Tqdm.write")
|
|
def test_tqdm_progress_bar_print_disabled(tqdm_write, mock_print, tmpdir):
|
|
"""Test that printing in LightningModule goes through built-in print function when progress bar is disabled."""
|
|
model = PrintModel()
|
|
bar = TQDMProgressBar()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
num_sanity_val_steps=0,
|
|
limit_train_batches=1,
|
|
limit_val_batches=1,
|
|
limit_test_batches=1,
|
|
limit_predict_batches=1,
|
|
max_steps=1,
|
|
callbacks=[bar],
|
|
)
|
|
bar.disable()
|
|
trainer.fit(model)
|
|
trainer.test(model, verbose=False)
|
|
trainer.predict(model)
|
|
|
|
mock_print.assert_has_calls(
|
|
[call("training_step", end=""), call("validation_step", file=ANY), call("test_step"), call("predict_step")]
|
|
)
|
|
tqdm_write.assert_not_called()
|
|
|
|
|
|
def test_tqdm_progress_bar_can_be_pickled():
|
|
bar = TQDMProgressBar()
|
|
trainer = Trainer(fast_dev_run=True, callbacks=[bar], max_steps=1)
|
|
model = BoringModel()
|
|
|
|
pickle.dumps(bar)
|
|
trainer.fit(model)
|
|
pickle.dumps(bar)
|
|
trainer.test(model)
|
|
pickle.dumps(bar)
|
|
trainer.predict(model)
|
|
pickle.dumps(bar)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
["val_check_interval", "main_progress_bar_updates", "val_progress_bar_updates"],
|
|
[(4, [0, 3, 6, 9, 12, 14], [0, 3, 6, 7]), (0.5, [0, 3, 6, 9, 12, 15, 18, 21], [0, 3, 6, 7])],
|
|
)
|
|
def test_progress_bar_max_val_check_interval(
|
|
tmpdir, val_check_interval, main_progress_bar_updates, val_progress_bar_updates
|
|
):
|
|
limit_batches = 7
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
num_sanity_val_steps=0,
|
|
max_epochs=1,
|
|
enable_model_summary=False,
|
|
val_check_interval=val_check_interval,
|
|
limit_train_batches=limit_batches,
|
|
limit_val_batches=limit_batches,
|
|
callbacks=TQDMProgressBar(refresh_rate=3),
|
|
)
|
|
with mock.patch("pytorch_lightning.callbacks.progress.tqdm_progress.Tqdm", MockTqdm):
|
|
trainer.fit(model)
|
|
|
|
pbar = trainer.progress_bar_callback
|
|
assert pbar.main_progress_bar.n_values == main_progress_bar_updates
|
|
assert pbar.val_progress_bar.n_values == val_progress_bar_updates
|
|
|
|
val_check_batch = (
|
|
max(1, int(limit_batches * val_check_interval)) if isinstance(val_check_interval, float) else val_check_interval
|
|
)
|
|
assert trainer.val_check_batch == val_check_batch
|
|
val_checks_per_epoch = math.ceil(limit_batches // val_check_batch)
|
|
pbar_callback = trainer.progress_bar_callback
|
|
total_val_batches = limit_batches * val_checks_per_epoch
|
|
|
|
assert pbar_callback.val_progress_bar.n == limit_batches
|
|
assert pbar_callback.val_progress_bar.total == limit_batches
|
|
assert pbar_callback.main_progress_bar.n == limit_batches + total_val_batches
|
|
assert pbar_callback.main_progress_bar.total == limit_batches + total_val_batches
|
|
assert pbar_callback.is_enabled
|
|
|
|
|
|
@RunIf(min_gpus=2, standalone=True)
|
|
@pytest.mark.parametrize("val_check_interval", [0.2, 0.5])
|
|
def test_progress_bar_max_val_check_interval_ddp(tmpdir, val_check_interval):
|
|
world_size = 2
|
|
total_train_samples = 16
|
|
train_batch_size = 4
|
|
total_val_samples = 2
|
|
val_batch_size = 1
|
|
train_data = DataLoader(RandomDataset(32, 8), batch_size=train_batch_size)
|
|
val_data = DataLoader(RandomDataset(32, total_val_samples), batch_size=val_batch_size)
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
num_sanity_val_steps=0,
|
|
max_epochs=1,
|
|
enable_model_summary=False,
|
|
val_check_interval=val_check_interval,
|
|
accelerator="gpu",
|
|
devices=world_size,
|
|
strategy="ddp",
|
|
)
|
|
trainer.fit(model, train_dataloaders=train_data, val_dataloaders=val_data)
|
|
|
|
total_train_batches = total_train_samples // (train_batch_size * world_size)
|
|
val_check_batch = max(1, int(total_train_batches * val_check_interval))
|
|
assert trainer.val_check_batch == val_check_batch
|
|
val_checks_per_epoch = total_train_batches / val_check_batch
|
|
total_val_batches = total_val_samples // (val_batch_size * world_size)
|
|
pbar_callback = trainer.progress_bar_callback
|
|
|
|
if trainer.is_global_zero:
|
|
assert pbar_callback.val_progress_bar.n == total_val_batches
|
|
assert pbar_callback.val_progress_bar.total == total_val_batches
|
|
total_val_batches = total_val_batches * val_checks_per_epoch
|
|
assert pbar_callback.main_progress_bar.n == (total_train_batches + total_val_batches) // world_size
|
|
assert pbar_callback.main_progress_bar.total == (total_train_batches + total_val_batches) // world_size
|
|
assert pbar_callback.is_enabled
|
|
|
|
|
|
def test_get_progress_bar_metrics(tmpdir: str):
|
|
class TestProgressBar(TQDMProgressBar):
|
|
def get_metrics(self, trainer: Trainer, model: LightningModule):
|
|
items = super().get_metrics(trainer, model)
|
|
items.pop("v_num", None)
|
|
return items
|
|
|
|
progress_bar = TestProgressBar()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
callbacks=[progress_bar],
|
|
fast_dev_run=True,
|
|
)
|
|
model = BoringModel()
|
|
trainer.fit(model)
|
|
model.truncated_bptt_steps = 2
|
|
standard_metrics = progress_bar.get_metrics(trainer, model)
|
|
assert "loss" in standard_metrics.keys()
|
|
assert "split_idx" in standard_metrics.keys()
|
|
assert "v_num" not in standard_metrics.keys()
|
|
|
|
|
|
def test_tqdm_progress_bar_correct_value_epoch_end(tmpdir):
|
|
"""TQDM counterpart to test_rich_progress_bar::test_rich_progress_bar_correct_value_epoch_end."""
|
|
|
|
class MockedProgressBar(TQDMProgressBar):
|
|
calls = defaultdict(list)
|
|
|
|
def get_metrics(self, trainer, pl_module):
|
|
items = super().get_metrics(trainer, model)
|
|
del items["v_num"]
|
|
del items["loss"]
|
|
# this is equivalent to mocking `set_postfix` as this method gets called every time
|
|
self.calls[trainer.state.fn].append(
|
|
(trainer.state.stage, trainer.current_epoch, trainer.global_step, items)
|
|
)
|
|
return items
|
|
|
|
class MyModel(BoringModel):
|
|
def training_step(self, batch, batch_idx):
|
|
self.log("a", self.global_step, prog_bar=True, on_step=False, on_epoch=True, reduce_fx=max)
|
|
return super().training_step(batch, batch_idx)
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
self.log("b", self.global_step, prog_bar=True, on_step=False, on_epoch=True, reduce_fx=max)
|
|
return super().validation_step(batch, batch_idx)
|
|
|
|
def test_step(self, batch, batch_idx):
|
|
self.log("c", self.global_step, prog_bar=True, on_step=False, on_epoch=True, reduce_fx=max)
|
|
return super().test_step(batch, batch_idx)
|
|
|
|
model = MyModel()
|
|
pbar = MockedProgressBar()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=2,
|
|
limit_val_batches=2,
|
|
limit_test_batches=2,
|
|
max_epochs=2,
|
|
enable_model_summary=False,
|
|
enable_checkpointing=False,
|
|
log_every_n_steps=1,
|
|
callbacks=pbar,
|
|
)
|
|
|
|
trainer.fit(model)
|
|
assert pbar.calls["fit"] == [
|
|
("sanity_check", 0, 0, {"b": 0}),
|
|
("train", 0, 1, {}),
|
|
("train", 0, 2, {}),
|
|
("validate", 0, 2, {"b": 2}), # validation end
|
|
# epoch end over, `on_epoch=True` metrics are computed
|
|
("train", 0, 2, {"a": 1, "b": 2}), # training epoch end
|
|
("train", 1, 3, {"a": 1, "b": 2}),
|
|
("train", 1, 4, {"a": 1, "b": 2}),
|
|
("validate", 1, 4, {"a": 1, "b": 4}), # validation end
|
|
("train", 1, 4, {"a": 3, "b": 4}), # training epoch end
|
|
]
|
|
|
|
trainer.validate(model, verbose=False)
|
|
assert pbar.calls["validate"] == []
|
|
|
|
trainer.test(model, verbose=False)
|
|
assert pbar.calls["test"] == []
|
|
|
|
|
|
@mock.patch("pytorch_lightning.trainer.trainer.Trainer.is_global_zero", new_callable=PropertyMock, return_value=False)
|
|
def test_tqdm_progress_bar_disabled_when_not_rank_zero(is_global_zero):
|
|
"""Test that the progress bar is disabled when not in global rank zero."""
|
|
pbar = TQDMProgressBar()
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
callbacks=[pbar],
|
|
fast_dev_run=True,
|
|
)
|
|
|
|
pbar.enable()
|
|
trainer.fit(model)
|
|
assert pbar.is_disabled
|
|
|
|
pbar.enable()
|
|
trainer.predict(model)
|
|
assert pbar.is_disabled
|
|
|
|
pbar.enable()
|
|
trainer.validate(model)
|
|
assert pbar.is_disabled
|
|
|
|
pbar.enable()
|
|
trainer.test(model)
|
|
assert pbar.is_disabled
|