# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import os import pickle import sys from collections import defaultdict from typing import Union from unittest import mock from unittest.mock import ANY, call, PropertyMock import pytest import torch from torch.utils.data.dataloader import DataLoader from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelCheckpoint, ProgressBarBase, TQDMProgressBar from pytorch_lightning.callbacks.progress.tqdm_progress import Tqdm from pytorch_lightning.core.lightning import LightningModule from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.helpers.boring_model import BoringModel, RandomDataset from tests.helpers.runif import RunIf class MockTqdm(Tqdm): def __init__(self, *args, **kwargs): self.n_values = [] self.total_values = [] self.descriptions = [] super().__init__(*args, **kwargs) self.__n = 0 self.__total = 0 # again to reset additions from `super().__init__` self.n_values = [] self.total_values = [] self.descriptions = [] @property def n(self): return self.__n @n.setter def n(self, value): self.__n = value # track the changes in the `n` value if not len(self.n_values) or value != self.n_values[-1]: self.n_values.append(value) @property def total(self): return self.__total @total.setter def total(self, value): self.__total = value self.total_values.append(value) def set_description(self, *args, **kwargs): super().set_description(*args, **kwargs) self.descriptions.append(self.desc) @pytest.mark.parametrize( "kwargs", [ # won't print but is still set {"callbacks": TQDMProgressBar(refresh_rate=0)}, {"callbacks": TQDMProgressBar()}, {"progress_bar_refresh_rate": 1}, ], ) def test_tqdm_progress_bar_on(tmpdir, kwargs): """Test different ways the progress bar can be turned on.""" if "progress_bar_refresh_rate" in kwargs: with pytest.deprecated_call(match=r"progress_bar_refresh_rate=.*` is deprecated"): trainer = Trainer(default_root_dir=tmpdir, **kwargs) else: trainer = Trainer(default_root_dir=tmpdir, **kwargs) progress_bars = [c for c in trainer.callbacks if isinstance(c, ProgressBarBase)] assert len(progress_bars) == 1 assert progress_bars[0] is trainer.progress_bar_callback @pytest.mark.parametrize("kwargs", [{"enable_progress_bar": False}, {"progress_bar_refresh_rate": 0}]) def test_tqdm_progress_bar_off(tmpdir, kwargs): """Test different ways the progress bar can be turned off.""" if "progress_bar_refresh_rate" in kwargs: pytest.deprecated_call(match=r"progress_bar_refresh_rate=.*` is deprecated").__enter__() trainer = Trainer(default_root_dir=tmpdir, **kwargs) progress_bars = [c for c in trainer.callbacks if isinstance(c, ProgressBarBase)] assert not len(progress_bars) def test_tqdm_progress_bar_misconfiguration(): """Test that Trainer doesn't accept multiple progress bars.""" # Trainer supports only a single progress bar callback at the moment callbacks = [TQDMProgressBar(), TQDMProgressBar(), ModelCheckpoint(dirpath="../trainer")] with pytest.raises(MisconfigurationException, match=r"^You added multiple progress bar callbacks"): Trainer(callbacks=callbacks) with pytest.raises(MisconfigurationException, match=r"enable_progress_bar=False` but found `TQDMProgressBar"): Trainer(callbacks=TQDMProgressBar(), enable_progress_bar=False) @pytest.mark.parametrize("num_dl", [1, 2]) def test_tqdm_progress_bar_totals(tmpdir, num_dl): """Test that the progress finishes with the correct total steps processed.""" class CustomModel(BoringModel): def _get_dataloaders(self): dls = [DataLoader(RandomDataset(32, 64)), DataLoader(RandomDataset(32, 64))] return dls[0] if num_dl == 1 else dls def val_dataloader(self): return self._get_dataloaders() def test_dataloader(self): return self._get_dataloaders() def predict_dataloader(self): return self._get_dataloaders() def validation_step(self, batch, batch_idx, dataloader_idx=None): return def test_step(self, batch, batch_idx, dataloader_idx=None): return def predict_step(self, batch, batch_idx, dataloader_idx=None): return model = CustomModel() model.validation_epoch_end = None model.test_epoch_end = None # check the sanity dataloaders num_sanity_val_steps = 4 trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=0, num_sanity_val_steps=num_sanity_val_steps ) pbar = trainer.progress_bar_callback with mock.patch("pytorch_lightning.callbacks.progress.tqdm_progress.Tqdm", MockTqdm): trainer.fit(model) expected_sanity_steps = [num_sanity_val_steps] * num_dl assert not pbar.val_progress_bar.leave assert trainer.num_sanity_val_batches == expected_sanity_steps assert pbar.val_progress_bar.total_values == expected_sanity_steps assert pbar.val_progress_bar.n_values == list(range(num_sanity_val_steps + 1)) * num_dl assert pbar.val_progress_bar.descriptions == [f"Sanity Checking DataLoader {i}: " for i in range(num_dl)] # fit trainer = Trainer(default_root_dir=tmpdir, max_epochs=1) pbar = trainer.progress_bar_callback with mock.patch("pytorch_lightning.callbacks.progress.tqdm_progress.Tqdm", MockTqdm): trainer.fit(model) n = trainer.num_training_batches m = trainer.num_val_batches assert len(trainer.train_dataloader) == n # main progress bar should have reached the end (train batches + val batches) assert pbar.main_progress_bar.total == n + sum(m) assert pbar.main_progress_bar.n == n + sum(m) assert pbar.main_progress_bar.leave # check val progress bar total assert pbar.val_progress_bar.total_values == m assert pbar.val_progress_bar.n_values == list(range(m[0] + 1)) * num_dl assert pbar.val_progress_bar.descriptions == [f"Validation DataLoader {i}: " for i in range(num_dl)] assert not pbar.val_progress_bar.leave # validate with mock.patch("pytorch_lightning.callbacks.progress.tqdm_progress.Tqdm", MockTqdm): trainer.validate(model) assert trainer.num_val_batches == m assert pbar.val_progress_bar.total_values == m assert pbar.val_progress_bar.n_values == list(range(m[0] + 1)) * num_dl assert pbar.val_progress_bar.descriptions == [f"Validation DataLoader {i}: " for i in range(num_dl)] # test with mock.patch("pytorch_lightning.callbacks.progress.tqdm_progress.Tqdm", MockTqdm): trainer.test(model) assert pbar.test_progress_bar.leave k = trainer.num_test_batches assert pbar.test_progress_bar.total_values == k assert pbar.test_progress_bar.n_values == list(range(k[0] + 1)) * num_dl assert pbar.test_progress_bar.descriptions == [f"Testing DataLoader {i}: " for i in range(num_dl)] assert pbar.test_progress_bar.leave # predict with mock.patch("pytorch_lightning.callbacks.progress.tqdm_progress.Tqdm", MockTqdm): trainer.predict(model) assert pbar.predict_progress_bar.leave k = trainer.num_predict_batches assert pbar.predict_progress_bar.total_values == k assert pbar.predict_progress_bar.n_values == list(range(k[0] + 1)) * num_dl assert pbar.predict_progress_bar.descriptions == [f"Predicting DataLoader {i}: " for i in range(num_dl)] assert pbar.predict_progress_bar.leave def test_tqdm_progress_bar_fast_dev_run(tmpdir): model = BoringModel() trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True) trainer.fit(model) pbar = trainer.progress_bar_callback assert 1 == pbar.val_progress_bar.n assert 1 == pbar.val_progress_bar.total # the main progress bar should display 2 batches (1 train, 1 val) assert 2 == pbar.main_progress_bar.total assert 2 == pbar.main_progress_bar.n trainer.validate(model) # the validation progress bar should display 1 batch assert 1 == pbar.val_progress_bar.total assert 1 == pbar.val_progress_bar.n trainer.test(model) # the test progress bar should display 1 batch assert 1 == pbar.test_progress_bar.total assert 1 == pbar.test_progress_bar.n @pytest.mark.parametrize("refresh_rate", [0, 1, 50]) def test_tqdm_progress_bar_progress_refresh(tmpdir, refresh_rate: int): """Test that the three progress bars get correctly updated when using different refresh rates.""" model = BoringModel() class CurrentProgressBar(TQDMProgressBar): train_batches_seen = 0 val_batches_seen = 0 test_batches_seen = 0 def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx): super().on_train_batch_end(trainer, pl_module, outputs, batch, batch_idx) self.train_batches_seen += 1 def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): super().on_validation_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx) self.val_batches_seen += 1 def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): super().on_test_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx) self.test_batches_seen += 1 pbar = CurrentProgressBar(refresh_rate=refresh_rate) with pytest.deprecated_call(match=r"progress_bar_refresh_rate=101\)` is deprecated"): trainer = Trainer( default_root_dir=tmpdir, callbacks=[pbar], progress_bar_refresh_rate=101, # should not matter if custom callback provided limit_train_batches=1.0, num_sanity_val_steps=2, max_epochs=3, ) assert trainer.progress_bar_callback.refresh_rate == refresh_rate trainer.fit(model) assert ( pbar.train_batches_seen + pbar.val_batches_seen == 3 * pbar.main_progress_bar.total + trainer.num_sanity_val_steps ) assert pbar.test_batches_seen == 0 trainer.validate(model) assert ( pbar.train_batches_seen + pbar.val_batches_seen == 3 * pbar.main_progress_bar.total + pbar.val_progress_bar.total + trainer.num_sanity_val_steps ) assert pbar.test_batches_seen == 0 trainer.test(model) assert ( pbar.train_batches_seen + pbar.val_batches_seen == 3 * pbar.main_progress_bar.total + pbar.val_progress_bar.total + trainer.num_sanity_val_steps ) assert pbar.test_batches_seen == pbar.test_progress_bar.total @pytest.mark.parametrize("limit_val_batches", (0, 5)) def test_num_sanity_val_steps_progress_bar(tmpdir, limit_val_batches: int): """Test val_progress_bar total with 'num_sanity_val_steps' Trainer argument.""" class CurrentProgressBar(TQDMProgressBar): val_pbar_total = 0 sanity_pbar_total = 0 def on_sanity_check_end(self, *args): self.sanity_pbar_total = self.val_progress_bar.total super().on_sanity_check_end(*args) def on_validation_epoch_end(self, *args): self.val_pbar_total = self.val_progress_bar.total super().on_validation_epoch_end(*args) model = BoringModel() pbar = CurrentProgressBar() num_sanity_val_steps = 2 trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, num_sanity_val_steps=num_sanity_val_steps, limit_train_batches=1, limit_val_batches=limit_val_batches, callbacks=[pbar], logger=False, enable_checkpointing=False, ) trainer.fit(model) assert pbar.sanity_pbar_total == min(num_sanity_val_steps, limit_val_batches) assert pbar.val_pbar_total == limit_val_batches def test_tqdm_progress_bar_default_value(tmpdir): """Test that a value of None defaults to refresh rate 1.""" trainer = Trainer(default_root_dir=tmpdir) assert trainer.progress_bar_callback.refresh_rate == 1 @mock.patch.dict(os.environ, {"COLAB_GPU": "1"}) def test_tqdm_progress_bar_value_on_colab(tmpdir): """Test that Trainer will override the default in Google COLAB.""" trainer = Trainer(default_root_dir=tmpdir) assert trainer.progress_bar_callback.refresh_rate == 20 trainer = Trainer(default_root_dir=tmpdir, callbacks=TQDMProgressBar()) assert trainer.progress_bar_callback.refresh_rate == 20 trainer = Trainer(default_root_dir=tmpdir, callbacks=TQDMProgressBar(refresh_rate=19)) assert trainer.progress_bar_callback.refresh_rate == 19 with pytest.deprecated_call(match=r"progress_bar_refresh_rate=19\)` is deprecated"): trainer = Trainer(default_root_dir=tmpdir, progress_bar_refresh_rate=19) assert trainer.progress_bar_callback.refresh_rate == 19 @pytest.mark.parametrize( "train_batches,val_batches,refresh_rate,train_updates,val_updates", [ [2, 3, 1, [0, 1, 2, 3, 4, 5], [0, 1, 2, 3]], [0, 0, 3, None, None], [1, 0, 3, [0, 1], None], [1, 1, 3, [0, 2], [0, 1]], [5, 0, 3, [0, 3, 5], None], [5, 2, 3, [0, 3, 6, 7], [0, 2]], [5, 2, 6, [0, 6, 7], [0, 2]], ], ) def test_main_progress_bar_update_amount( tmpdir, train_batches: int, val_batches: int, refresh_rate: int, train_updates, val_updates ): """Test that the main progress updates with the correct amount together with the val progress. At the end of the epoch, the progress must not overshoot if the number of steps is not divisible by the refresh rate. """ model = BoringModel() progress_bar = TQDMProgressBar(refresh_rate=refresh_rate) trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=train_batches, limit_val_batches=val_batches, callbacks=[progress_bar], logger=False, enable_checkpointing=False, ) with mock.patch("pytorch_lightning.callbacks.progress.tqdm_progress.Tqdm", MockTqdm): trainer.fit(model) if train_batches > 0: assert progress_bar.main_progress_bar.n_values == train_updates if val_batches > 0: assert progress_bar.val_progress_bar.n_values == val_updates @pytest.mark.parametrize("test_batches,refresh_rate,updates", [(1, 3, [0, 1]), (3, 1, [0, 1, 2, 3]), (5, 3, [0, 3, 5])]) def test_test_progress_bar_update_amount(tmpdir, test_batches: int, refresh_rate: int, updates: list): """Test that test progress updates with the correct amount.""" model = BoringModel() progress_bar = TQDMProgressBar(refresh_rate=refresh_rate) trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_test_batches=test_batches, callbacks=[progress_bar], logger=False, enable_checkpointing=False, ) with mock.patch("pytorch_lightning.callbacks.progress.tqdm_progress.Tqdm", MockTqdm): trainer.test(model) assert progress_bar.test_progress_bar.n_values == updates def test_tensor_to_float_conversion(tmpdir): """Check tensor gets converted to float.""" class TestModel(BoringModel): def training_step(self, batch, batch_idx): self.log("a", torch.tensor(0.123), prog_bar=True, on_epoch=False) self.log("b", {"b1": torch.tensor([1])}, prog_bar=True, on_epoch=False) self.log("c", {"c1": 2}, prog_bar=True, on_epoch=False) return super().training_step(batch, batch_idx) trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=2, logger=False, enable_checkpointing=False ) trainer.fit(TestModel()) torch.testing.assert_allclose(trainer.progress_bar_metrics["a"], 0.123) assert trainer.progress_bar_metrics["b"] == {"b1": 1.0} assert trainer.progress_bar_metrics["c"] == {"c1": 2.0} pbar = trainer.progress_bar_callback.main_progress_bar actual = str(pbar.postfix) assert actual.endswith("a=0.123, b={'b1': 1.0}, c={'c1': 2.0}"), actual @pytest.mark.parametrize( "input_num, expected", [ [1, "1"], [1.0, "1.000"], [0.1, "0.100"], [1e-3, "0.001"], [1e-5, "1e-5"], ["1.0", "1.000"], ["10000", "10000"], ["abc", "abc"], ], ) def test_tqdm_format_num(input_num: Union[str, int, float], expected: str): """Check that the specialized tqdm.format_num appends 0 to floats and strings.""" assert Tqdm.format_num(input_num) == expected class PrintModel(BoringModel): def training_step(self, *args, **kwargs): self.print("training_step", end="") return super().training_step(*args, **kwargs) def validation_step(self, *args, **kwargs): self.print("validation_step", file=sys.stderr) return super().validation_step(*args, **kwargs) def test_step(self, *args, **kwargs): self.print("test_step") return super().test_step(*args, **kwargs) def predict_step(self, *args, **kwargs): self.print("predict_step") return super().predict_step(*args, **kwargs) @mock.patch("tqdm.tqdm.write") def test_tqdm_progress_bar_print(tqdm_write, tmpdir): """Test that printing in the LightningModule redirects arguments to the progress bar.""" model = PrintModel() bar = TQDMProgressBar() trainer = Trainer( default_root_dir=tmpdir, num_sanity_val_steps=0, limit_train_batches=1, limit_val_batches=1, limit_test_batches=1, limit_predict_batches=1, max_steps=1, callbacks=[bar], ) trainer.fit(model) trainer.test(model) trainer.predict(model) assert tqdm_write.call_args_list == [ call("training_step", end=""), call("validation_step", file=sys.stderr), call("test_step"), call("predict_step"), ] @mock.patch("tqdm.tqdm.write") def test_tqdm_progress_bar_print_no_train(tqdm_write, tmpdir): """Test that printing in the LightningModule redirects arguments to the progress bar without training.""" model = PrintModel() bar = TQDMProgressBar() trainer = Trainer( default_root_dir=tmpdir, num_sanity_val_steps=0, limit_val_batches=1, limit_test_batches=1, limit_predict_batches=1, max_steps=1, callbacks=[bar], ) trainer.validate(model) trainer.test(model) trainer.predict(model) assert tqdm_write.call_args_list == [ call("validation_step", file=sys.stderr), call("test_step"), call("predict_step"), ] @mock.patch("builtins.print") @mock.patch("pytorch_lightning.callbacks.progress.tqdm_progress.Tqdm.write") def test_tqdm_progress_bar_print_disabled(tqdm_write, mock_print, tmpdir): """Test that printing in LightningModule goes through built-in print function when progress bar is disabled.""" model = PrintModel() bar = TQDMProgressBar() trainer = Trainer( default_root_dir=tmpdir, num_sanity_val_steps=0, limit_train_batches=1, limit_val_batches=1, limit_test_batches=1, limit_predict_batches=1, max_steps=1, callbacks=[bar], ) bar.disable() trainer.fit(model) trainer.test(model, verbose=False) trainer.predict(model) mock_print.assert_has_calls( [call("training_step", end=""), call("validation_step", file=ANY), call("test_step"), call("predict_step")] ) tqdm_write.assert_not_called() def test_tqdm_progress_bar_can_be_pickled(): bar = TQDMProgressBar() trainer = Trainer(fast_dev_run=True, callbacks=[bar], max_steps=1) model = BoringModel() pickle.dumps(bar) trainer.fit(model) pickle.dumps(bar) trainer.test(model) pickle.dumps(bar) trainer.predict(model) pickle.dumps(bar) @pytest.mark.parametrize( ["val_check_interval", "main_progress_bar_updates", "val_progress_bar_updates"], [(4, [0, 3, 6, 9, 12, 14], [0, 3, 6, 7]), (0.5, [0, 3, 6, 9, 12, 15, 18, 21], [0, 3, 6, 7])], ) def test_progress_bar_max_val_check_interval( tmpdir, val_check_interval, main_progress_bar_updates, val_progress_bar_updates ): limit_batches = 7 model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, num_sanity_val_steps=0, max_epochs=1, enable_model_summary=False, val_check_interval=val_check_interval, limit_train_batches=limit_batches, limit_val_batches=limit_batches, callbacks=TQDMProgressBar(refresh_rate=3), ) with mock.patch("pytorch_lightning.callbacks.progress.tqdm_progress.Tqdm", MockTqdm): trainer.fit(model) pbar = trainer.progress_bar_callback assert pbar.main_progress_bar.n_values == main_progress_bar_updates assert pbar.val_progress_bar.n_values == val_progress_bar_updates val_check_batch = ( max(1, int(limit_batches * val_check_interval)) if isinstance(val_check_interval, float) else val_check_interval ) assert trainer.val_check_batch == val_check_batch val_checks_per_epoch = math.ceil(limit_batches // val_check_batch) pbar_callback = trainer.progress_bar_callback total_val_batches = limit_batches * val_checks_per_epoch assert pbar_callback.val_progress_bar.n == limit_batches assert pbar_callback.val_progress_bar.total == limit_batches assert pbar_callback.main_progress_bar.n == limit_batches + total_val_batches assert pbar_callback.main_progress_bar.total == limit_batches + total_val_batches assert pbar_callback.is_enabled @RunIf(min_gpus=2, standalone=True) @pytest.mark.parametrize("val_check_interval", [0.2, 0.5]) def test_progress_bar_max_val_check_interval_ddp(tmpdir, val_check_interval): world_size = 2 total_train_samples = 16 train_batch_size = 4 total_val_samples = 2 val_batch_size = 1 train_data = DataLoader(RandomDataset(32, 8), batch_size=train_batch_size) val_data = DataLoader(RandomDataset(32, total_val_samples), batch_size=val_batch_size) model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, num_sanity_val_steps=0, max_epochs=1, enable_model_summary=False, val_check_interval=val_check_interval, accelerator="gpu", devices=world_size, strategy="ddp", ) trainer.fit(model, train_dataloaders=train_data, val_dataloaders=val_data) total_train_batches = total_train_samples // (train_batch_size * world_size) val_check_batch = max(1, int(total_train_batches * val_check_interval)) assert trainer.val_check_batch == val_check_batch val_checks_per_epoch = total_train_batches / val_check_batch total_val_batches = total_val_samples // (val_batch_size * world_size) pbar_callback = trainer.progress_bar_callback if trainer.is_global_zero: assert pbar_callback.val_progress_bar.n == total_val_batches assert pbar_callback.val_progress_bar.total == total_val_batches total_val_batches = total_val_batches * val_checks_per_epoch assert pbar_callback.main_progress_bar.n == (total_train_batches + total_val_batches) // world_size assert pbar_callback.main_progress_bar.total == (total_train_batches + total_val_batches) // world_size assert pbar_callback.is_enabled def test_get_progress_bar_metrics(tmpdir: str): class TestProgressBar(TQDMProgressBar): def get_metrics(self, trainer: Trainer, model: LightningModule): items = super().get_metrics(trainer, model) items.pop("v_num", None) return items progress_bar = TestProgressBar() trainer = Trainer( default_root_dir=tmpdir, callbacks=[progress_bar], fast_dev_run=True, ) model = BoringModel() trainer.fit(model) model.truncated_bptt_steps = 2 standard_metrics = progress_bar.get_metrics(trainer, model) assert "loss" in standard_metrics.keys() assert "split_idx" in standard_metrics.keys() assert "v_num" not in standard_metrics.keys() def test_tqdm_progress_bar_correct_value_epoch_end(tmpdir): """TQDM counterpart to test_rich_progress_bar::test_rich_progress_bar_correct_value_epoch_end.""" class MockedProgressBar(TQDMProgressBar): calls = defaultdict(list) def get_metrics(self, trainer, pl_module): items = super().get_metrics(trainer, model) del items["v_num"] del items["loss"] # this is equivalent to mocking `set_postfix` as this method gets called every time self.calls[trainer.state.fn].append( (trainer.state.stage, trainer.current_epoch, trainer.global_step, items) ) return items class MyModel(BoringModel): def training_step(self, batch, batch_idx): self.log("a", self.global_step, prog_bar=True, on_step=False, on_epoch=True, reduce_fx=max) return super().training_step(batch, batch_idx) def validation_step(self, batch, batch_idx): self.log("b", self.global_step, prog_bar=True, on_step=False, on_epoch=True, reduce_fx=max) return super().validation_step(batch, batch_idx) def test_step(self, batch, batch_idx): self.log("c", self.global_step, prog_bar=True, on_step=False, on_epoch=True, reduce_fx=max) return super().test_step(batch, batch_idx) model = MyModel() pbar = MockedProgressBar() trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=2, limit_test_batches=2, max_epochs=2, enable_model_summary=False, enable_checkpointing=False, log_every_n_steps=1, callbacks=pbar, ) trainer.fit(model) assert pbar.calls["fit"] == [ ("sanity_check", 0, 0, {"b": 0}), ("train", 0, 1, {}), ("train", 0, 2, {}), ("validate", 0, 2, {"b": 2}), # validation end # epoch end over, `on_epoch=True` metrics are computed ("train", 0, 2, {"a": 1, "b": 2}), # training epoch end ("train", 1, 3, {"a": 1, "b": 2}), ("train", 1, 4, {"a": 1, "b": 2}), ("validate", 1, 4, {"a": 1, "b": 4}), # validation end ("train", 1, 4, {"a": 3, "b": 4}), # training epoch end ] trainer.validate(model, verbose=False) assert pbar.calls["validate"] == [] trainer.test(model, verbose=False) assert pbar.calls["test"] == [] @mock.patch("pytorch_lightning.trainer.trainer.Trainer.is_global_zero", new_callable=PropertyMock, return_value=False) def test_tqdm_progress_bar_disabled_when_not_rank_zero(is_global_zero): """Test that the progress bar is disabled when not in global rank zero.""" pbar = TQDMProgressBar() model = BoringModel() trainer = Trainer( callbacks=[pbar], fast_dev_run=True, ) pbar.enable() trainer.fit(model) assert pbar.is_disabled pbar.enable() trainer.predict(model) assert pbar.is_disabled pbar.enable() trainer.validate(model) assert pbar.is_disabled pbar.enable() trainer.test(model) assert pbar.is_disabled