Adam's beta 2 parameter was mistakenly referred to as the first order momentum of the gradient, whereas it should be the second order momentum. This has no effect on the correct working of the example.
* add MNIST DALI example, update README.md
* Fix PEP8 warnings
* reformatted using black
* add mnist_dali to test_examples.py
* Add documentation as docstrings
* add nvidia-pyindex and nvidia-dali-cuda100
* replace nvidia-pyindex with --extra-index-url
* mark mnist_dali test as Linux and GPU only
* adjust CUDA docker and examples.txt, fix import error in test_examples.py
* adjust the GPU check
* Exit when DALI is not available
* remove requirements-examples.txt and DALI pip install
* Refactored example, moved to new logging api, added runtime check for test and dali script
* Patch to reflect the mnist example module
* add req.
* Apply suggestions from code review
* Removed requirement as it breaks CPU install, added note in README to install DALI
* add DALI to Drone
* test examples
* Apply suggestions from code review
* imports
* ABC
* cuda
* cuda
* pip DALI
* Move build into init function
Co-authored-by: SeanNaren <sean@grid.ai>
Co-authored-by: Jirka Borovec <jirka@pytorchlightning.ai>
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
* Removed image generation inside the training step.
It was overwriting the image grid generated in `on_epoch_end`. I also made `adversarial_loss` a static method.
* Incorporated Hyperparameter best practices
Using ArgumentParser and hparams as defined in the Hyperparameters section of
the documentation. This way we can set trainer flags (such as precision,
and gpus) from the command line.
* Incorporated Hyperparameter best practices
Using ArgumentParser and hparams as defined in the Hyperparameters section of
the documentation. This way we can set trainer flags (such as precision,
and gpus) from the command line.
* Split the data part into a LightningDataModule
* Update pl_examples/domain_templates/generative_adversarial_net.py
Co-authored-by: Jeff Yang <ydcjeff@outlook.com>
* fix imagenet example: lr_scheduler, loader workers, batch size when ddp
* Fix evaluation for imagenet example
* add imagenet example test
* cleanup
* gpu
* add imagenet example evluation test
* fix test output
* test is fixed in master, remove unecessary hack
* CHANGE
* Apply suggestions from code review
* image net example
* update imagenet example
* update example
* pep
* imports
* type hint
* docs
* obsolete arg
* [wip] fix imagenet example: lr_scheduler, loader workers, batch size when ddp (#2432)
* fix imagenet example: lr_scheduler, loader workers, batch size when ddp
* Fix evaluation for imagenet example
* add imagenet example test
* cleanup
* gpu
* add imagenet example evluation test
* fix test output
* test is fixed in master, remove unecessary hack
* CHANGE
* Apply suggestions from code review
Co-authored-by: Jirka <jirka@pytorchlightning.ai>
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* update chlog
* add missing chlog
* pep
* pep
Co-authored-by: Ruotian Luo <rluo@ttic.edu>
Co-authored-by: Jirka <jirka@pytorchlightning.ai>
* add tests for single scalar return from training
* add tests for single scalar return from training
* add tests for single scalar return from training
* fixing val step only
* fixing val step only
* fixing val step only
* fixing val step only
* fixing val step only
* fixing val step only
* fixing val step only
* fixing val step only
* fixing val step only
* fixing val step only
* fixing val step only
* fixing val step only
* fixing val step only
* fixing val step only
* fixing val step only
* fixing val step only
* fixing val step only
* fixing val step only
* fixing val step only
* fixing val step only
* fixing val step only
* fixing val step only
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* fix tpu hang
* no cov
* no cov
* ReduceOp
* group
* reduce_op.sum
* Update sklearns.py
* formatting
* horovod
* Apply suggestions from code review
* horovod
* horovod
* horovod
* horovod
* ci
* print
* ci
* timeout
* timeout
* time
* fix
* distributed cpu
* pipes
* time
* cpu
* spawn
* spawn
* spawn
* tp
* separate
* os
* os
* npm
* Fix load_from_checkpoint() not working with URL on Windows
* Update CHANGELOG
* Update CHANGELOG.md
Co-authored-by: Peter Yu <2057325+yukw777@users.noreply.github.com>
* Apply suggestions from code review
* fix
* fix meta tags creating empty lines
* pyright
* node
* fix httpserver address
* drop tutils.default_trainer_options
* imports
* Better fix for load_from_checkpoint() not working with absolute path on Windows (#2294)
* Fix load_from_checkpoint() not working with URL on Windows
* Update CHANGELOG
* Update CHANGELOG.md
Co-authored-by: Peter Yu <2057325+yukw777@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
Co-authored-by: Peter Yu <2057325+yukw777@users.noreply.github.com>
* drop duplicate
Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com>
Co-authored-by: airium <airium@outlook.com>
Co-authored-by: Peter Yu <2057325+yukw777@users.noreply.github.com>
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
Co-authored-by: AIRIUM <38249940+airium@users.noreply.github.com>
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* replace ddp spawn with subprocess
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* hot fix
* 🐛 fixed fake example type assigning and hparams arg
* fixed GAN example to work with dp, ddp., ddp_cpu
* Update generative_adversarial_net.py
Co-authored-by: William Falcon <waf2107@columbia.edu>