Combine utilities
This commit is contained in:
parent
10d41fb4ea
commit
e52386b003
|
@ -1,13 +1,16 @@
|
|||
import os
|
||||
import platform
|
||||
import time
|
||||
from typing import Callable
|
||||
from unittest import mock
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
|
||||
from benchmarks.utilities import plugin_parity_test
|
||||
from pytorch_lightning import Trainer
|
||||
from pytorch_lightning import seed_everything
|
||||
from pytorch_lightning.plugins.ddp_plugin import DDPPlugin
|
||||
from pytorch_lightning.plugins.sharded_plugin import DDPShardedPlugin
|
||||
from pytorch_lightning.utilities import FAIRSCALE_AVAILABLE, NATIVE_AMP_AVAILABLE
|
||||
from tests.backends.launcher import DDPLauncher
|
||||
|
@ -208,3 +211,112 @@ class SeedTrainLoaderMultipleOptimizersModel(SeedTrainLoaderModel):
|
|||
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
||||
optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
||||
return optimizer, optimizer_2
|
||||
|
||||
|
||||
def record_ddp_fit_model_stats(trainer, model, use_cuda):
|
||||
"""
|
||||
Helper to calculate wall clock time for fit + max allocated memory.
|
||||
|
||||
Args:
|
||||
trainer: The trainer object.
|
||||
model: The model to fit.
|
||||
use_cuda: Whether to sync CUDA kernels.
|
||||
|
||||
Returns:
|
||||
Max Memory if using GPUs, and total wall clock time.
|
||||
"""
|
||||
max_memory = None
|
||||
|
||||
time_start = time.perf_counter()
|
||||
if use_cuda:
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
torch.cuda.synchronize()
|
||||
|
||||
trainer.fit(model)
|
||||
|
||||
if use_cuda:
|
||||
torch.cuda.synchronize()
|
||||
max_memory = torch.cuda.max_memory_allocated() / 2 ** 20
|
||||
|
||||
total_time = time.perf_counter() - time_start
|
||||
|
||||
return max_memory, total_time
|
||||
|
||||
|
||||
def plugin_parity_test(
|
||||
model_cls: Callable,
|
||||
plugin: DDPPlugin,
|
||||
seed: int = 42,
|
||||
accelerator: str = 'ddp_spawn',
|
||||
gpus: int = 0,
|
||||
precision: int = 32,
|
||||
max_percent_speed_diff: float = 0.25):
|
||||
"""
|
||||
Ensures that the trained model is identical to the standard DDP implementation.
|
||||
Also checks for speed/memory regressions, we should expect always less memory but performance to fluctuate.
|
||||
|
||||
Args:
|
||||
model_cls: Model class to use for test.
|
||||
plugin: Plugin to parity test.
|
||||
seed: Seed for generators. Note that this does not handle the seed for data-loading on multi-process.
|
||||
accelerator: Accelerator type for test.
|
||||
gpus: Number of GPUS to enable.
|
||||
precision: Whether to use AMP or normal FP32 training.
|
||||
max_percent_speed_diff: The maximum speed difference compared to normal DDP training.
|
||||
This is more a safety net for variability in CI which can vary in speed, not for benchmarking.
|
||||
|
||||
"""
|
||||
|
||||
# Train normal DDP
|
||||
seed_everything(seed)
|
||||
ddp_model = model_cls()
|
||||
use_cuda = gpus > 0
|
||||
|
||||
trainer = Trainer(
|
||||
fast_dev_run=True,
|
||||
max_epochs=1,
|
||||
gpus=gpus,
|
||||
precision=precision,
|
||||
accelerator=accelerator,
|
||||
)
|
||||
|
||||
max_memory_ddp, ddp_time = record_ddp_fit_model_stats(
|
||||
trainer=trainer,
|
||||
model=ddp_model,
|
||||
use_cuda=use_cuda
|
||||
)
|
||||
|
||||
# Reset and train Custom DDP
|
||||
seed_everything(seed)
|
||||
custom_plugin_model = model_cls()
|
||||
|
||||
trainer = Trainer(
|
||||
fast_dev_run=True,
|
||||
max_epochs=1,
|
||||
gpus=gpus,
|
||||
precision=precision,
|
||||
accelerator=accelerator,
|
||||
plugins=[plugin],
|
||||
)
|
||||
|
||||
max_memory_custom, custom_model_time = record_ddp_fit_model_stats(
|
||||
trainer=trainer,
|
||||
model=custom_plugin_model,
|
||||
use_cuda=use_cuda
|
||||
)
|
||||
|
||||
# Assert model parameters are identical after fit
|
||||
for ddp_param, custom_param in zip(ddp_model.parameters(), custom_plugin_model.parameters()):
|
||||
assert torch.equal(ddp_param, custom_param), 'Model parameters are different between DDP and Custom plugin'
|
||||
|
||||
# Assert speed parity by ensuring percentage difference between custom/ddp is below threshold
|
||||
percent_diff = (custom_model_time - ddp_time) / custom_model_time
|
||||
|
||||
assert percent_diff <= max_percent_speed_diff, \
|
||||
f'Custom DDP plugin was too slow compared to DDP, Custom Plugin Time: {custom_model_time}, DDP Time: {ddp_time}'
|
||||
|
||||
if use_cuda:
|
||||
# Assert CUDA memory parity
|
||||
assert max_memory_custom <= max_memory_ddp, \
|
||||
f'Custom plugin used too much memory compared to DDP,' \
|
||||
f'Custom Mem: {max_memory_custom}, DDP Mem: {max_memory_ddp}'
|
||||
|
|
|
@ -1,117 +0,0 @@
|
|||
import time
|
||||
from typing import Callable
|
||||
|
||||
import torch
|
||||
from pytorch_lightning.plugins.ddp_plugin import DDPPlugin
|
||||
|
||||
from pytorch_lightning import Trainer
|
||||
from pytorch_lightning.utilities.seed import seed_everything
|
||||
|
||||
|
||||
def record_ddp_fit_model_stats(trainer, model, use_cuda):
|
||||
"""
|
||||
Helper to calculate wall clock time for fit + max allocated memory.
|
||||
|
||||
Args:
|
||||
trainer: The trainer object.
|
||||
model: The model to fit.
|
||||
use_cuda: Whether to sync CUDA kernels.
|
||||
|
||||
Returns:
|
||||
Max Memory if using GPUs, and total wall clock time.
|
||||
"""
|
||||
max_memory = None
|
||||
|
||||
time_start = time.perf_counter()
|
||||
if use_cuda:
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
torch.cuda.synchronize()
|
||||
|
||||
trainer.fit(model)
|
||||
|
||||
if use_cuda:
|
||||
torch.cuda.synchronize()
|
||||
max_memory = torch.cuda.max_memory_allocated() / 2 ** 20
|
||||
|
||||
total_time = time.perf_counter() - time_start
|
||||
|
||||
return max_memory, total_time
|
||||
|
||||
|
||||
def plugin_parity_test(
|
||||
model_cls: Callable,
|
||||
plugin: DDPPlugin,
|
||||
seed: int = 42,
|
||||
accelerator: str = 'ddp_spawn',
|
||||
gpus: int = 0,
|
||||
precision: int = 32,
|
||||
max_percent_speed_diff: float = 0.25):
|
||||
"""
|
||||
Ensures that the trained model is identical to the standard DDP implementation.
|
||||
Also checks for speed/memory regressions, we should expect always less memory but performance to fluctuate.
|
||||
|
||||
Args:
|
||||
model_cls: Model class to use for test.
|
||||
plugin: Plugin to parity test.
|
||||
seed: Seed for generators. Note that this does not handle the seed for data-loading on multi-process.
|
||||
accelerator: Accelerator type for test.
|
||||
gpus: Number of GPUS to enable.
|
||||
precision: Whether to use AMP or normal FP32 training.
|
||||
max_percent_speed_diff: The maximum speed difference compared to normal DDP training.
|
||||
This is more a safety net for variability in CI which can vary in speed, not for benchmarking.
|
||||
|
||||
"""
|
||||
|
||||
# Train normal DDP
|
||||
seed_everything(seed)
|
||||
ddp_model = model_cls()
|
||||
use_cuda = gpus > 0
|
||||
|
||||
trainer = Trainer(
|
||||
fast_dev_run=True,
|
||||
max_epochs=1,
|
||||
gpus=gpus,
|
||||
precision=precision,
|
||||
accelerator=accelerator,
|
||||
)
|
||||
|
||||
max_memory_ddp, ddp_time = record_ddp_fit_model_stats(
|
||||
trainer=trainer,
|
||||
model=ddp_model,
|
||||
use_cuda=use_cuda
|
||||
)
|
||||
|
||||
# Reset and train Custom DDP
|
||||
seed_everything(seed)
|
||||
custom_plugin_model = model_cls()
|
||||
|
||||
trainer = Trainer(
|
||||
fast_dev_run=True,
|
||||
max_epochs=1,
|
||||
gpus=gpus,
|
||||
precision=precision,
|
||||
accelerator=accelerator,
|
||||
plugins=[plugin],
|
||||
)
|
||||
|
||||
max_memory_custom, custom_model_time = record_ddp_fit_model_stats(
|
||||
trainer=trainer,
|
||||
model=custom_plugin_model,
|
||||
use_cuda=use_cuda
|
||||
)
|
||||
|
||||
# Assert model parameters are identical after fit
|
||||
for ddp_param, custom_param in zip(ddp_model.parameters(), custom_plugin_model.parameters()):
|
||||
assert torch.equal(ddp_param, custom_param), 'Model parameters are different between DDP and Custom plugin'
|
||||
|
||||
# Assert speed parity by ensuring percentage difference between custom/ddp is below threshold
|
||||
percent_diff = (custom_model_time - ddp_time) / custom_model_time
|
||||
|
||||
assert percent_diff <= max_percent_speed_diff, \
|
||||
f'Custom DDP plugin was too slow compared to DDP, Custom Plugin Time: {custom_model_time}, DDP Time: {ddp_time}'
|
||||
|
||||
if use_cuda:
|
||||
# Assert CUDA memory parity
|
||||
assert max_memory_custom <= max_memory_ddp, \
|
||||
f'Custom plugin used too much memory compared to DDP,' \
|
||||
f'Custom Mem: {max_memory_custom}, DDP Mem: {max_memory_ddp}'
|
Loading…
Reference in New Issue