Moved common functions into utilities
This commit is contained in:
parent
bde2a12990
commit
10d41fb4ea
|
@ -1,13 +1,13 @@
|
|||
import os
|
||||
import platform
|
||||
import time
|
||||
from unittest import mock
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
|
||||
from pytorch_lightning import Trainer, seed_everything
|
||||
from benchmarks.utilities import plugin_parity_test
|
||||
from pytorch_lightning import seed_everything
|
||||
from pytorch_lightning.plugins.sharded_plugin import DDPShardedPlugin
|
||||
from pytorch_lightning.utilities import FAIRSCALE_AVAILABLE, NATIVE_AMP_AVAILABLE
|
||||
from tests.backends.launcher import DDPLauncher
|
||||
|
@ -19,7 +19,12 @@ from tests.base.boring_model import BoringModel, RandomDataset
|
|||
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
|
||||
def test_ddp_sharded_plugin_correctness_one_device():
|
||||
# Allow slightly slower speed due to one CPU doing additional sequential memory saving calls
|
||||
run_sharded_correctness(accelerator='ddp_cpu', max_percent_speed_diff=0.5)
|
||||
plugin_parity_test(
|
||||
accelerator='ddp_cpu',
|
||||
max_percent_speed_diff=0.5,
|
||||
plugin=DDPShardedPlugin(),
|
||||
model_cls=SeedTrainLoaderModel
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skipif(not torch.cuda.is_available(), reason="requires GPU machine")
|
||||
|
@ -27,7 +32,12 @@ def test_ddp_sharded_plugin_correctness_one_device():
|
|||
reason="Distributed training is not supported on Windows")
|
||||
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
|
||||
def test_ddp_sharded_plugin_correctness_one_gpu():
|
||||
run_sharded_correctness(gpus=1, accelerator='ddp_spawn')
|
||||
plugin_parity_test(
|
||||
gpus=1,
|
||||
accelerator='ddp_spawn',
|
||||
plugin=DDPShardedPlugin(),
|
||||
model_cls=SeedTrainLoaderModel
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skipif(not NATIVE_AMP_AVAILABLE, reason="Requires native AMP")
|
||||
|
@ -36,7 +46,13 @@ def test_ddp_sharded_plugin_correctness_one_gpu():
|
|||
reason="Distributed training is not supported on Windows")
|
||||
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
|
||||
def test_ddp_sharded_plugin_correctness_amp_one_gpu():
|
||||
run_sharded_correctness(gpus=1, precision=16, accelerator='ddp_spawn')
|
||||
plugin_parity_test(
|
||||
gpus=1,
|
||||
precision=16,
|
||||
accelerator='ddp_spawn',
|
||||
plugin=DDPShardedPlugin(),
|
||||
model_cls=SeedTrainLoaderModel
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
||||
|
@ -44,7 +60,12 @@ def test_ddp_sharded_plugin_correctness_amp_one_gpu():
|
|||
reason="Distributed training is not supported on Windows")
|
||||
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
|
||||
def test_ddp_sharded_plugin_correctness_multi_gpu():
|
||||
run_sharded_correctness(gpus=2, accelerator='ddp_spawn')
|
||||
plugin_parity_test(
|
||||
gpus=2,
|
||||
accelerator='ddp_spawn',
|
||||
plugin=DDPShardedPlugin(),
|
||||
model_cls=SeedTrainLoaderModel
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skipif(not NATIVE_AMP_AVAILABLE, reason="Requires native AMP")
|
||||
|
@ -53,7 +74,13 @@ def test_ddp_sharded_plugin_correctness_multi_gpu():
|
|||
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
||||
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
|
||||
def test_ddp_sharded_plugin_correctness_amp_multi_gpu():
|
||||
run_sharded_correctness(gpus=2, precision=16, accelerator='ddp_spawn')
|
||||
plugin_parity_test(
|
||||
gpus=2,
|
||||
precision=16,
|
||||
accelerator='ddp_spawn',
|
||||
plugin=DDPShardedPlugin(),
|
||||
model_cls=SeedTrainLoaderModel
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
|
||||
|
@ -63,7 +90,13 @@ def test_ddp_sharded_plugin_correctness_amp_multi_gpu():
|
|||
reason="test should be run outside of pytest")
|
||||
@DDPLauncher.run("--distributed_backend ddp --gpus 2 --precision 32")
|
||||
def test_ddp_sharded_plugin_correctness_multi_gpu_ddp(tmpdir, args=None):
|
||||
run_sharded_correctness(gpus=args.gpus, precision=args.precision, accelerator=args.distributed_backend)
|
||||
plugin_parity_test(
|
||||
gpus=args.gpus,
|
||||
precision=args.precision,
|
||||
accelerator=args.distributed_backend,
|
||||
plugin=DDPShardedPlugin(),
|
||||
model_cls=SeedTrainLoaderModel
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
|
||||
|
@ -73,7 +106,13 @@ def test_ddp_sharded_plugin_correctness_multi_gpu_ddp(tmpdir, args=None):
|
|||
reason="test should be run outside of pytest")
|
||||
@DDPLauncher.run("--distributed_backend ddp --gpus 2 --precision 16")
|
||||
def test_ddp_sharded_plugin_correctness_amp_multi_gpu_ddp(tmpdir, args=None):
|
||||
run_sharded_correctness(gpus=args.gpus, precision=args.precision, accelerator=args.distributed_backend)
|
||||
plugin_parity_test(
|
||||
gpus=args.gpus,
|
||||
precision=args.precision,
|
||||
accelerator=args.distributed_backend,
|
||||
plugin=DDPShardedPlugin(),
|
||||
model_cls=SeedTrainLoaderModel
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
||||
|
@ -84,7 +123,8 @@ def test_ddp_sharded_plugin_correctness_multi_gpu_multi_optim():
|
|||
"""
|
||||
Ensures same results using multiple optimizers across multiple GPUs
|
||||
"""
|
||||
run_sharded_correctness(
|
||||
plugin_parity_test(
|
||||
plugin=DDPShardedPlugin(),
|
||||
gpus=2,
|
||||
accelerator='ddp_spawn',
|
||||
model_cls=SeedTrainLoaderMultipleOptimizersModel,
|
||||
|
@ -102,7 +142,8 @@ def test_ddp_sharded_plugin_correctness_multi_gpu_multi_optim_manual(tmpdir):
|
|||
"""
|
||||
Ensures using multiple optimizers across multiple GPUs with manual optimization
|
||||
"""
|
||||
run_sharded_correctness(
|
||||
plugin_parity_test(
|
||||
plugin=DDPShardedPlugin(),
|
||||
gpus=2,
|
||||
accelerator='ddp_spawn',
|
||||
model_cls=SeedTrainLoaderManualModel,
|
||||
|
@ -167,108 +208,3 @@ class SeedTrainLoaderMultipleOptimizersModel(SeedTrainLoaderModel):
|
|||
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
||||
optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
|
||||
return optimizer, optimizer_2
|
||||
|
||||
|
||||
def record_ddp_fit_model_stats(trainer, model, gpus):
|
||||
"""
|
||||
Helper to calculate wall clock time for fit + max allocated memory.
|
||||
|
||||
Args:
|
||||
trainer: The trainer object.
|
||||
model: The LightningModule.
|
||||
gpus: Number of GPUs in test.
|
||||
|
||||
Returns:
|
||||
Max Memory if using GPUs, and total wall clock time.
|
||||
|
||||
"""
|
||||
max_memory = None
|
||||
|
||||
time_start = time.perf_counter()
|
||||
if gpus > 0:
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
torch.cuda.synchronize()
|
||||
|
||||
trainer.fit(model)
|
||||
|
||||
if gpus > 0:
|
||||
torch.cuda.synchronize()
|
||||
max_memory = torch.cuda.max_memory_allocated() / 2 ** 20
|
||||
|
||||
total_time = time.perf_counter() - time_start
|
||||
|
||||
return max_memory, total_time
|
||||
|
||||
|
||||
def run_sharded_correctness(
|
||||
accelerator='ddp_spawn',
|
||||
gpus=0,
|
||||
precision=32,
|
||||
max_percent_speed_diff=0.25,
|
||||
model_cls=SeedTrainLoaderModel):
|
||||
"""
|
||||
Ensures that the trained model is identical to the standard DDP implementation.
|
||||
Also checks for speed/memory regressions, we should expect always less memory but performance to fluctuate.
|
||||
|
||||
Args:
|
||||
accelerator: Accelerator type for test.
|
||||
gpus: Number of GPUS to enable.
|
||||
precision: Whether to use AMP or normal FP32 training.
|
||||
max_percent_speed_diff: The maximum speed difference compared to normal DDP training.
|
||||
This is more a safety net for variability in CI which can vary in speed, not for benchmarking.
|
||||
model_cls: Model class to use for test.
|
||||
|
||||
"""
|
||||
|
||||
# Train normal DDP
|
||||
seed_everything(42)
|
||||
ddp_model = model_cls()
|
||||
|
||||
trainer = Trainer(
|
||||
fast_dev_run=True,
|
||||
max_epochs=1,
|
||||
gpus=gpus,
|
||||
precision=precision,
|
||||
accelerator=accelerator,
|
||||
)
|
||||
|
||||
max_ddp_memory, ddp_time = record_ddp_fit_model_stats(
|
||||
trainer=trainer,
|
||||
model=ddp_model,
|
||||
gpus=gpus
|
||||
)
|
||||
|
||||
# Reset and train sharded DDP
|
||||
seed_everything(42)
|
||||
sharded_model = model_cls()
|
||||
|
||||
trainer = Trainer(
|
||||
fast_dev_run=True,
|
||||
max_epochs=1,
|
||||
gpus=gpus,
|
||||
precision=precision,
|
||||
accelerator=accelerator,
|
||||
plugins=[DDPShardedPlugin()],
|
||||
)
|
||||
|
||||
max_sharded_memory, sharded_time = record_ddp_fit_model_stats(
|
||||
trainer=trainer,
|
||||
model=sharded_model,
|
||||
gpus=gpus
|
||||
)
|
||||
|
||||
# Assert model parameters are identical after fit
|
||||
for ddp_param, shard_param in zip(ddp_model.parameters(), sharded_model.parameters()):
|
||||
assert torch.equal(ddp_param, shard_param), 'Model parameters are different between DDP and Sharded plugin'
|
||||
|
||||
# Assert speed parity by ensuring percentage difference between sharded/ddp is below threshold
|
||||
percent_diff = (sharded_time - ddp_time) / sharded_time
|
||||
|
||||
assert percent_diff <= max_percent_speed_diff, \
|
||||
f'Sharded plugin was too slow compared to DDP, Sharded Time: {sharded_time}, DDP Time: {ddp_time}'
|
||||
|
||||
if gpus > 0:
|
||||
# Assert CUDA memory parity
|
||||
assert max_sharded_memory <= max_ddp_memory, \
|
||||
f'Sharded plugin used too much memory compared to DDP,' \
|
||||
f'Sharded Mem: {max_sharded_memory}, DDP Mem: {max_ddp_memory}'
|
||||
|
|
|
@ -0,0 +1,117 @@
|
|||
import time
|
||||
from typing import Callable
|
||||
|
||||
import torch
|
||||
from pytorch_lightning.plugins.ddp_plugin import DDPPlugin
|
||||
|
||||
from pytorch_lightning import Trainer
|
||||
from pytorch_lightning.utilities.seed import seed_everything
|
||||
|
||||
|
||||
def record_ddp_fit_model_stats(trainer, model, use_cuda):
|
||||
"""
|
||||
Helper to calculate wall clock time for fit + max allocated memory.
|
||||
|
||||
Args:
|
||||
trainer: The trainer object.
|
||||
model: The model to fit.
|
||||
use_cuda: Whether to sync CUDA kernels.
|
||||
|
||||
Returns:
|
||||
Max Memory if using GPUs, and total wall clock time.
|
||||
"""
|
||||
max_memory = None
|
||||
|
||||
time_start = time.perf_counter()
|
||||
if use_cuda:
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
torch.cuda.synchronize()
|
||||
|
||||
trainer.fit(model)
|
||||
|
||||
if use_cuda:
|
||||
torch.cuda.synchronize()
|
||||
max_memory = torch.cuda.max_memory_allocated() / 2 ** 20
|
||||
|
||||
total_time = time.perf_counter() - time_start
|
||||
|
||||
return max_memory, total_time
|
||||
|
||||
|
||||
def plugin_parity_test(
|
||||
model_cls: Callable,
|
||||
plugin: DDPPlugin,
|
||||
seed: int = 42,
|
||||
accelerator: str = 'ddp_spawn',
|
||||
gpus: int = 0,
|
||||
precision: int = 32,
|
||||
max_percent_speed_diff: float = 0.25):
|
||||
"""
|
||||
Ensures that the trained model is identical to the standard DDP implementation.
|
||||
Also checks for speed/memory regressions, we should expect always less memory but performance to fluctuate.
|
||||
|
||||
Args:
|
||||
model_cls: Model class to use for test.
|
||||
plugin: Plugin to parity test.
|
||||
seed: Seed for generators. Note that this does not handle the seed for data-loading on multi-process.
|
||||
accelerator: Accelerator type for test.
|
||||
gpus: Number of GPUS to enable.
|
||||
precision: Whether to use AMP or normal FP32 training.
|
||||
max_percent_speed_diff: The maximum speed difference compared to normal DDP training.
|
||||
This is more a safety net for variability in CI which can vary in speed, not for benchmarking.
|
||||
|
||||
"""
|
||||
|
||||
# Train normal DDP
|
||||
seed_everything(seed)
|
||||
ddp_model = model_cls()
|
||||
use_cuda = gpus > 0
|
||||
|
||||
trainer = Trainer(
|
||||
fast_dev_run=True,
|
||||
max_epochs=1,
|
||||
gpus=gpus,
|
||||
precision=precision,
|
||||
accelerator=accelerator,
|
||||
)
|
||||
|
||||
max_memory_ddp, ddp_time = record_ddp_fit_model_stats(
|
||||
trainer=trainer,
|
||||
model=ddp_model,
|
||||
use_cuda=use_cuda
|
||||
)
|
||||
|
||||
# Reset and train Custom DDP
|
||||
seed_everything(seed)
|
||||
custom_plugin_model = model_cls()
|
||||
|
||||
trainer = Trainer(
|
||||
fast_dev_run=True,
|
||||
max_epochs=1,
|
||||
gpus=gpus,
|
||||
precision=precision,
|
||||
accelerator=accelerator,
|
||||
plugins=[plugin],
|
||||
)
|
||||
|
||||
max_memory_custom, custom_model_time = record_ddp_fit_model_stats(
|
||||
trainer=trainer,
|
||||
model=custom_plugin_model,
|
||||
use_cuda=use_cuda
|
||||
)
|
||||
|
||||
# Assert model parameters are identical after fit
|
||||
for ddp_param, custom_param in zip(ddp_model.parameters(), custom_plugin_model.parameters()):
|
||||
assert torch.equal(ddp_param, custom_param), 'Model parameters are different between DDP and Custom plugin'
|
||||
|
||||
# Assert speed parity by ensuring percentage difference between custom/ddp is below threshold
|
||||
percent_diff = (custom_model_time - ddp_time) / custom_model_time
|
||||
|
||||
assert percent_diff <= max_percent_speed_diff, \
|
||||
f'Custom DDP plugin was too slow compared to DDP, Custom Plugin Time: {custom_model_time}, DDP Time: {ddp_time}'
|
||||
|
||||
if use_cuda:
|
||||
# Assert CUDA memory parity
|
||||
assert max_memory_custom <= max_memory_ddp, \
|
||||
f'Custom plugin used too much memory compared to DDP,' \
|
||||
f'Custom Mem: {max_memory_custom}, DDP Mem: {max_memory_ddp}'
|
Loading…
Reference in New Issue