diff --git a/CHANGELOG.md b/CHANGELOG.md index b2b0d8feb5..a6afe75a1e 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -16,7 +16,9 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/). - Added auto scaling of batch size ([#1638](https://github.com/PyTorchLightning/pytorch-lightning/pull/1638)) -- The progress bar metrics now also get updated in `training_epoch_end` ([#1724](https://github.com/PyTorchLightning/pytorch-lightning/pull/1724)). +- The progress bar metrics now also get updated in `training_epoch_end` ([#1724](https://github.com/PyTorchLightning/pytorch-lightning/pull/1724)) + +- Enable `NeptuneLogger` to work with `distributed_backend=ddp` ([#1753](https://github.com/PyTorchLightning/pytorch-lightning/pull/1753)) ### Changed @@ -24,15 +26,25 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/). - Updated LightningTemplateModel to look more like Colab example ([#1577](https://github.com/PyTorchLightning/pytorch-lightning/pull/1577)) +- Don't convert `namedtuple` to `tuple` when transferring the batch to target device ([#1589](https://github.com/PyTorchLightning/pytorch-lightning/pull/1589)) + +- Allow passing hparams as keyword argument to LightningModule when loading from checkpoint ([#1639](https://github.com/PyTorchLightning/pytorch-lightning/pull/1639)) + ### Deprecated ### Removed ### Fixed -- Fixed ModelCheckpoint not None checking filepath ([1654](https://github.com/PyTorchLightning/pytorch-lightning/pull/1654)) +- Fixed broken link in PR template ([#1675](https://github.com/PyTorchLightning/pytorch-lightning/pull/1675)) -- Trainer now calls `on_load_checkpoint()` when resuming from a checkpoint ([1666](https://github.com/PyTorchLightning/pytorch-lightning/pull/1666)) +- Fixed ModelCheckpoint not None checking filepath ([#1654](https://github.com/PyTorchLightning/pytorch-lightning/pull/1654)) + +- Trainer now calls `on_load_checkpoint()` when resuming from a checkpoint ([#1666](https://github.com/PyTorchLightning/pytorch-lightning/pull/1666)) + +- Fixed sampler logic for ddp with iterable dataset ([#1734](https://github.com/PyTorchLightning/pytorch-lightning/pull/1734)) + +- Fixed `_reset_eval_dataloader()` for IterableDataset ([#1560](https://github.com/PyTorchLightning/pytorch-lightning/pull/1560)) - Fixed Horovod distributed backend to set the `root_gpu` property ([#1669](https://github.com/PyTorchLightning/pytorch-lightning/pull/1669)) diff --git a/pytorch_lightning/__init__.py b/pytorch_lightning/__init__.py index 705bdfc641..fb77ead042 100644 --- a/pytorch_lightning/__init__.py +++ b/pytorch_lightning/__init__.py @@ -1,6 +1,6 @@ """Root package info.""" -__version__ = '0.7.5' +__version__ = '0.7.6rc1' __author__ = 'William Falcon et al.' __author_email__ = 'waf2107@columbia.edu' __license__ = 'Apache-2.0' diff --git a/tests/models/data/horovod/train_default_model.py b/tests/models/data/horovod/train_default_model.py index dd585dccc1..6bf0e3aa9c 100644 --- a/tests/models/data/horovod/train_default_model.py +++ b/tests/models/data/horovod/train_default_model.py @@ -45,15 +45,16 @@ def run_test_from_config(trainer_options): ckpt_path = trainer_options['default_root_dir'] trainer_options.update(checkpoint_callback=ModelCheckpoint(ckpt_path)) - model = EvalModelTemplate(EvalModelTemplate.get_default_hparams()) + model = EvalModelTemplate() run_model_test(trainer_options, model, on_gpu=args.on_gpu, version=0, with_hpc=False) # Horovod should be initialized following training. If not, this will raise an exception. assert hvd.size() == 2 if args.on_gpu: + trainer = Trainer(gpus=1, distributed_backend='horovod', max_epochs=1) # Test the root_gpu property - assert Trainer(gpus=1, distributed_backend='horovod', max_epochs=1).root_gpu == hvd.local_rank() + assert trainer.root_gpu == hvd.local_rank() if __name__ == "__main__": diff --git a/tests/test_profiler.py b/tests/test_profiler.py index b53c6d9209..3bce379c11 100644 --- a/tests/test_profiler.py +++ b/tests/test_profiler.py @@ -7,7 +7,7 @@ import pytest from pytorch_lightning.profiler import AdvancedProfiler, SimpleProfiler -PROFILER_OVERHEAD_MAX_TOLERANCE = 0.0001 +PROFILER_OVERHEAD_MAX_TOLERANCE = 0.0005 def _get_python_cprofile_total_duration(profile):