2020-06-02 22:51:09 +00:00
|
|
|
import numpy as np
|
2020-06-16 02:03:40 +00:00
|
|
|
import pytest
|
2020-06-02 22:51:09 +00:00
|
|
|
|
2020-06-16 02:03:40 +00:00
|
|
|
from pytorch_lightning import Trainer
|
2020-06-02 22:51:09 +00:00
|
|
|
from pytorch_lightning.loggers import LightningLoggerBase
|
|
|
|
from pytorch_lightning.utilities import rank_zero_only
|
|
|
|
from tests.base import EvalModelTemplate
|
|
|
|
from tests.base.utils import reset_seed
|
|
|
|
|
|
|
|
|
|
|
|
class OnlyMetricsListLogger(LightningLoggerBase):
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.metrics = []
|
|
|
|
|
|
|
|
@rank_zero_only
|
|
|
|
def log_metrics(self, metrics, step):
|
|
|
|
self.metrics.append(metrics)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def experiment(self):
|
|
|
|
return 'test'
|
|
|
|
|
|
|
|
@rank_zero_only
|
|
|
|
def log_hyperparams(self, params):
|
|
|
|
pass
|
|
|
|
|
|
|
|
@rank_zero_only
|
|
|
|
def finalize(self, status):
|
|
|
|
pass
|
|
|
|
|
|
|
|
@property
|
|
|
|
def name(self):
|
|
|
|
return 'name'
|
|
|
|
|
|
|
|
@property
|
|
|
|
def version(self):
|
|
|
|
return '1'
|
|
|
|
|
|
|
|
|
|
|
|
class ModelWithManualGradTracker(EvalModelTemplate):
|
|
|
|
def __init__(self, norm_type, *args, **kwargs):
|
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
self.stored_grad_norms, self.norm_type = [], float(norm_type)
|
|
|
|
|
|
|
|
# validation spoils logger's metrics with `val_loss` records
|
|
|
|
validation_step = None
|
|
|
|
val_dataloader = None
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx=None):
|
|
|
|
# just return a loss, no log or progress bar meta
|
|
|
|
x, y = batch
|
|
|
|
loss_val = self.loss(y, self(x.flatten(1, -1)))
|
|
|
|
return {'loss': loss_val}
|
|
|
|
|
|
|
|
def on_after_backward(self):
|
|
|
|
out, norms = {}, []
|
|
|
|
prefix = f'grad_{self.norm_type}_norm_'
|
|
|
|
for name, p in self.named_parameters():
|
|
|
|
if p.grad is None:
|
|
|
|
continue
|
|
|
|
|
|
|
|
# `np.linalg.norm` implementation likely uses fp64 intermediates
|
|
|
|
flat = p.grad.data.cpu().numpy().ravel()
|
|
|
|
norm = np.linalg.norm(flat, self.norm_type)
|
|
|
|
norms.append(norm)
|
|
|
|
|
|
|
|
out[prefix + name] = round(norm, 3)
|
|
|
|
|
|
|
|
# handle total norm
|
|
|
|
norm = np.linalg.norm(norms, self.norm_type)
|
|
|
|
out[prefix + 'total'] = round(norm, 3)
|
|
|
|
self.stored_grad_norms.append(out)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("norm_type", [1., 1.25, 1.5, 2, 3, 5, 10, 'inf'])
|
|
|
|
def test_grad_tracking(tmpdir, norm_type, rtol=5e-3):
|
|
|
|
# rtol=5e-3 respects the 3 decmials rounding in `.grad_norms` and above
|
|
|
|
|
|
|
|
reset_seed()
|
|
|
|
|
|
|
|
# use a custom grad tracking module and a list logger
|
|
|
|
model = ModelWithManualGradTracker(norm_type)
|
|
|
|
logger = OnlyMetricsListLogger()
|
|
|
|
|
|
|
|
trainer = Trainer(
|
|
|
|
max_epochs=3,
|
|
|
|
logger=logger,
|
|
|
|
track_grad_norm=norm_type,
|
|
|
|
row_log_interval=1, # request grad_norms every batch
|
|
|
|
)
|
|
|
|
result = trainer.fit(model)
|
|
|
|
|
|
|
|
assert result == 1, "Training failed"
|
|
|
|
assert len(logger.metrics) == len(model.stored_grad_norms)
|
|
|
|
|
|
|
|
# compare the logged metrics against tracked norms on `.backward`
|
|
|
|
for mod, log in zip(model.stored_grad_norms, logger.metrics):
|
|
|
|
common = mod.keys() & log.keys()
|
|
|
|
|
|
|
|
log, mod = [log[k] for k in common], [mod[k] for k in common]
|
|
|
|
|
|
|
|
assert np.allclose(log, mod, rtol=rtol)
|