lightning/tests/models/test_grad_norm.py

104 lines
2.9 KiB
Python
Raw Normal View History

import numpy as np
2020-06-16 02:03:40 +00:00
import pytest
2020-06-16 02:03:40 +00:00
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import LightningLoggerBase
from pytorch_lightning.utilities import rank_zero_only
from tests.base import EvalModelTemplate
from tests.base.utils import reset_seed
class OnlyMetricsListLogger(LightningLoggerBase):
def __init__(self):
super().__init__()
self.metrics = []
@rank_zero_only
def log_metrics(self, metrics, step):
self.metrics.append(metrics)
@property
def experiment(self):
return 'test'
@rank_zero_only
def log_hyperparams(self, params):
pass
@rank_zero_only
def finalize(self, status):
pass
@property
def name(self):
return 'name'
@property
def version(self):
return '1'
class ModelWithManualGradTracker(EvalModelTemplate):
def __init__(self, norm_type, *args, **kwargs):
super().__init__(*args, **kwargs)
self.stored_grad_norms, self.norm_type = [], float(norm_type)
# validation spoils logger's metrics with `val_loss` records
validation_step = None
val_dataloader = None
def training_step(self, batch, batch_idx, optimizer_idx=None):
# just return a loss, no log or progress bar meta
x, y = batch
loss_val = self.loss(y, self(x.flatten(1, -1)))
return {'loss': loss_val}
def on_after_backward(self):
out, norms = {}, []
prefix = f'grad_{self.norm_type}_norm_'
for name, p in self.named_parameters():
if p.grad is None:
continue
# `np.linalg.norm` implementation likely uses fp64 intermediates
flat = p.grad.data.cpu().numpy().ravel()
norm = np.linalg.norm(flat, self.norm_type)
norms.append(norm)
out[prefix + name] = round(norm, 3)
# handle total norm
norm = np.linalg.norm(norms, self.norm_type)
out[prefix + 'total'] = round(norm, 3)
self.stored_grad_norms.append(out)
@pytest.mark.parametrize("norm_type", [1., 1.25, 1.5, 2, 3, 5, 10, 'inf'])
def test_grad_tracking(tmpdir, norm_type, rtol=5e-3):
# rtol=5e-3 respects the 3 decmials rounding in `.grad_norms` and above
reset_seed()
# use a custom grad tracking module and a list logger
model = ModelWithManualGradTracker(norm_type)
logger = OnlyMetricsListLogger()
trainer = Trainer(
max_epochs=3,
logger=logger,
track_grad_norm=norm_type,
row_log_interval=1, # request grad_norms every batch
)
result = trainer.fit(model)
assert result == 1, "Training failed"
assert len(logger.metrics) == len(model.stored_grad_norms)
# compare the logged metrics against tracked norms on `.backward`
for mod, log in zip(model.stored_grad_norms, logger.metrics):
common = mod.keys() & log.keys()
log, mod = [log[k] for k in common], [mod[k] for k in common]
assert np.allclose(log, mod, rtol=rtol)