import numpy as np import pytest from pytorch_lightning import Trainer from pytorch_lightning.loggers import LightningLoggerBase from pytorch_lightning.utilities import rank_zero_only from tests.base import EvalModelTemplate from tests.base.utils import reset_seed class OnlyMetricsListLogger(LightningLoggerBase): def __init__(self): super().__init__() self.metrics = [] @rank_zero_only def log_metrics(self, metrics, step): self.metrics.append(metrics) @property def experiment(self): return 'test' @rank_zero_only def log_hyperparams(self, params): pass @rank_zero_only def finalize(self, status): pass @property def name(self): return 'name' @property def version(self): return '1' class ModelWithManualGradTracker(EvalModelTemplate): def __init__(self, norm_type, *args, **kwargs): super().__init__(*args, **kwargs) self.stored_grad_norms, self.norm_type = [], float(norm_type) # validation spoils logger's metrics with `val_loss` records validation_step = None val_dataloader = None def training_step(self, batch, batch_idx, optimizer_idx=None): # just return a loss, no log or progress bar meta x, y = batch loss_val = self.loss(y, self(x.flatten(1, -1))) return {'loss': loss_val} def on_after_backward(self): out, norms = {}, [] prefix = f'grad_{self.norm_type}_norm_' for name, p in self.named_parameters(): if p.grad is None: continue # `np.linalg.norm` implementation likely uses fp64 intermediates flat = p.grad.data.cpu().numpy().ravel() norm = np.linalg.norm(flat, self.norm_type) norms.append(norm) out[prefix + name] = round(norm, 3) # handle total norm norm = np.linalg.norm(norms, self.norm_type) out[prefix + 'total'] = round(norm, 3) self.stored_grad_norms.append(out) @pytest.mark.parametrize("norm_type", [1., 1.25, 1.5, 2, 3, 5, 10, 'inf']) def test_grad_tracking(tmpdir, norm_type, rtol=5e-3): # rtol=5e-3 respects the 3 decmials rounding in `.grad_norms` and above reset_seed() # use a custom grad tracking module and a list logger model = ModelWithManualGradTracker(norm_type) logger = OnlyMetricsListLogger() trainer = Trainer( max_epochs=3, logger=logger, track_grad_norm=norm_type, row_log_interval=1, # request grad_norms every batch ) result = trainer.fit(model) assert result == 1, "Training failed" assert len(logger.metrics) == len(model.stored_grad_norms) # compare the logged metrics against tracked norms on `.backward` for mod, log in zip(model.stored_grad_norms, logger.metrics): common = mod.keys() & log.keys() log, mod = [log[k] for k in common], [mod[k] for k in common] assert np.allclose(log, mod, rtol=rtol)