lightning/pytorch_lightning/plugins/precision/deepspeed_precision.py

62 lines
2.0 KiB
Python
Raw Normal View History

DeepSpeed Integration (#5954) * Add initial deepspeed changes * Address code review * Move static method outside of function * Fixes * Add missing annotation * Remove seed setting * Doc changes * Doc changes, add address reviews * Fix docs * Try fixing issue by moving to torch adam * Clean up check * Changes, better APIs! * Add wrapper, swap to git install revision * Add special test * Add warning * Address review * Add better disclaimer * Turn off ZeRO for testing due to compilation * Add description on modifying parameters via the plugin * Doc strings clear * Small doc fixes * Fix hash, reduce test * Added CI change * Move to azure pipeline * Fix test name * Add missing flag * Remove sudo... * Try conda instead * Swap to conda base * Try suggested install * Apply suggestions from code review * Apply suggestions from code review * Revert "Apply suggestions from code review" This reverts commit 41cca05a * Revert "Apply suggestions from code review" This reverts commit e06ec29e * Remove setter * Address most review * Move out function, remove DeepSpeed from requirements * Install deepspeed/mpi4py within container * Use special tests, move to master commit for deepspeed * Export path * Force compile to happen first * Remove! * Debugging ninja * Fix error in optimizer step logic * Attempt to fix symbolic link * Reverse to aid debugging * Export path again * Clean up mess * var * Revert "var" This reverts commit 3450eaca * Address review, add todo * Add note about unsupported functionality Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: tchaton <thomas@grid.ai> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz>
2021-02-17 20:23:42 +00:00
from typing import Callable, Union
import torch
from torch.optim import Optimizer
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.plugins.precision.precision_plugin import PrecisionPlugin
from pytorch_lightning.utilities.model_helpers import is_overridden
from pytorch_lightning.utilities.warnings import WarningCache
warning_cache = WarningCache()
class DeepSpeedPrecisionPlugin(PrecisionPlugin):
def __init__(self, precision):
super().__init__()
self.precision = precision
def pre_optimizer_step(
self, pl_module: LightningModule, optimizer: Optimizer, optimizer_idx: int, lambda_closure: Callable, **kwargs
) -> bool:
deepspeed_engine = pl_module.trainer.model
# DeepSpeed not support closures.
lambda_closure()
if not pl_module.automatic_optimization:
pl_module.trainer.call_hook("on_after_backward")
deepspeed_engine.step()
return False
def backward(
self,
lightning_module: LightningModule,
closure_loss: torch.Tensor,
optimizer: torch.optim.Optimizer,
opt_idx: int,
should_accumulate: bool,
*args,
**kwargs,
):
if is_overridden('backward', lightning_module):
warning_cache.warn(
"Overridden backward hook in the LightningModule will be ignored since DeepSpeed handles"
"backward logic outside of the LightningModule"
)
# todo: hack around for deepspeed engine to call backward
deepspeed_engine = lightning_module.trainer.model
deepspeed_engine.backward(closure_loss, **kwargs)
# once backward has been applied, release graph
closure_loss = closure_loss.detach()
return closure_loss
def clip_gradients(self, optimizer: Optimizer, clip_val: Union[int, float], norm_type: float = float(2.0)):
"""
DeepSpeed handles clipping gradients via the training type plugin.
"""
pass