from typing import Callable, Union import torch from torch.optim import Optimizer from pytorch_lightning.core.lightning import LightningModule from pytorch_lightning.plugins.precision.precision_plugin import PrecisionPlugin from pytorch_lightning.utilities.model_helpers import is_overridden from pytorch_lightning.utilities.warnings import WarningCache warning_cache = WarningCache() class DeepSpeedPrecisionPlugin(PrecisionPlugin): def __init__(self, precision): super().__init__() self.precision = precision def pre_optimizer_step( self, pl_module: LightningModule, optimizer: Optimizer, optimizer_idx: int, lambda_closure: Callable, **kwargs ) -> bool: deepspeed_engine = pl_module.trainer.model # DeepSpeed not support closures. lambda_closure() if not pl_module.automatic_optimization: pl_module.trainer.call_hook("on_after_backward") deepspeed_engine.step() return False def backward( self, lightning_module: LightningModule, closure_loss: torch.Tensor, optimizer: torch.optim.Optimizer, opt_idx: int, should_accumulate: bool, *args, **kwargs, ): if is_overridden('backward', lightning_module): warning_cache.warn( "Overridden backward hook in the LightningModule will be ignored since DeepSpeed handles" "backward logic outside of the LightningModule" ) # todo: hack around for deepspeed engine to call backward deepspeed_engine = lightning_module.trainer.model deepspeed_engine.backward(closure_loss, **kwargs) # once backward has been applied, release graph closure_loss = closure_loss.detach() return closure_loss def clip_gradients(self, optimizer: Optimizer, clip_val: Union[int, float], norm_type: float = float(2.0)): """ DeepSpeed handles clipping gradients via the training type plugin. """ pass