lightning/pytorch_lightning/trainer/logger_connector.py

72 lines
2.6 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from pytorch_lightning.core import memory
class LoggerConnector:
def __init__(self, trainer):
self.trainer = trainer
self.callback_metrics = {}
self.logged_metrics = {}
self.progress_bar_metrics = {}
def log_metrics(self, metrics, grad_norm_dic, step=None):
"""Logs the metric dict passed in.
If `step` parameter is None and `step` key is presented is metrics,
uses metrics["step"] as a step
Args:
metrics (dict): Metric values
grad_norm_dic (dict): Gradient norms
step (int): Step for which metrics should be logged. Default value corresponds to `self.global_step`
"""
# add gpu memory
if self.trainer.on_gpu and self.trainer.log_gpu_memory:
mem_map = memory.get_memory_profile(self.trainer.log_gpu_memory)
metrics.update(mem_map)
# add norms
metrics.update(grad_norm_dic)
# turn all tensors to scalars
scalar_metrics = self.trainer.metrics_to_scalars(metrics)
if "step" in scalar_metrics and step is None:
step = scalar_metrics.pop("step")
elif step is None:
# added metrics by Lightning for convenience
scalar_metrics['epoch'] = self.trainer.current_epoch
step = step if step is not None else self.trainer.global_step
# log actual metrics
if self.trainer.is_global_zero and self.trainer.logger is not None:
self.trainer.logger.agg_and_log_metrics(scalar_metrics, step=step)
self.trainer.logger.save()
# track the logged metrics
self.logged_metrics = scalar_metrics
self.trainer.dev_debugger.track_logged_metrics_history(scalar_metrics)
def add_progress_bar_metrics(self, metrics):
for k, v in metrics.items():
if isinstance(v, torch.Tensor):
v = v.item()
self.progress_bar_metrics[k] = v
self.trainer.dev_debugger.track_pbar_metrics_history(metrics)