ref: inner train loop (intermediate step) 19/n (#3385)

* ref: inner train loop (intermediate step) 19/n

* Update debugging.py

* ref: inner train loop (intermediate step) 19/n
This commit is contained in:
William Falcon 2020-09-07 11:55:14 -04:00 committed by GitHub
parent 0b5b70d6c9
commit 7e874d70d6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 45 additions and 52 deletions

View File

@ -345,7 +345,7 @@ class ModelCheckpoint(Callback):
self.epoch_last_check = epoch
ckpt_name_metrics = trainer.logged_metrics
ckpt_name_metrics = trainer.logger_connector.logged_metrics
filepath = self.format_checkpoint_name(epoch, ckpt_name_metrics)
version_cnt = 0
while self._fs.exists(filepath):

View File

@ -276,7 +276,7 @@ class EvaluationLoop(object):
for k, v in step_log_metrics.items():
metrics_by_epoch[f'{k}/epoch_{self.trainer.current_epoch}'] = v
self.trainer.log_metrics(metrics_by_epoch, {}, step=batch_idx)
self.trainer.logger_connector.log_metrics(metrics_by_epoch, {}, step=batch_idx)
if len(step_pbar_metrics) > 0:
self.trainer.add_progress_bar_metrics(step_pbar_metrics)

View File

@ -211,10 +211,6 @@ class TrainerEvaluationLoopMixin(ABC):
def add_progress_bar_metrics(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def log_metrics(self, *args, **kwargs):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def reset_test_dataloader(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@ -337,7 +333,7 @@ class TrainerEvaluationLoopMixin(ABC):
self.add_progress_bar_metrics(prog_bar_metrics)
# log metrics
self.log_metrics(log_metrics, {})
self.logger_connector.log_metrics(log_metrics, {})
# track metrics for callbacks
self.logger_connector.callback_metrics.update(callback_metrics)

View File

@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pytorch_lightning.core import memory
class LoggerConnector:
@ -18,3 +19,42 @@ class LoggerConnector:
def __init__(self, trainer):
self.trainer = trainer
self.callback_metrics = {}
self.logged_metrics = {}
def log_metrics(self, metrics, grad_norm_dic, step=None):
"""Logs the metric dict passed in.
If `step` parameter is None and `step` key is presented is metrics,
uses metrics["step"] as a step
Args:
metrics (dict): Metric values
grad_norm_dic (dict): Gradient norms
step (int): Step for which metrics should be logged. Default value corresponds to `self.global_step`
"""
# add gpu memory
if self.trainer.on_gpu and self.trainer.log_gpu_memory:
mem_map = memory.get_memory_profile(self.trainer.log_gpu_memory)
metrics.update(mem_map)
# add norms
metrics.update(grad_norm_dic)
# turn all tensors to scalars
scalar_metrics = self.trainer.metrics_to_scalars(metrics)
if "step" in scalar_metrics and step is None:
step = scalar_metrics.pop("step")
elif step is None:
# added metrics by Lightning for convenience
scalar_metrics['epoch'] = self.trainer.current_epoch
step = step if step is not None else self.trainer.global_step
# log actual metrics
if self.trainer.is_global_zero and self.trainer.logger is not None:
self.trainer.logger.agg_and_log_metrics(scalar_metrics, step=step)
self.trainer.logger.save()
# track the logged metrics
self.logged_metrics = scalar_metrics
self.trainer.dev_debugger.track_logged_metrics_history(scalar_metrics)

View File

@ -56,44 +56,6 @@ class TrainerLoggingMixin(ABC):
else:
self.logger = logger
def log_metrics(self, metrics, grad_norm_dic, step=None):
"""Logs the metric dict passed in.
If `step` parameter is None and `step` key is presented is metrics,
uses metrics["step"] as a step
Args:
metrics (dict): Metric values
grad_norm_dic (dict): Gradient norms
step (int): Step for which metrics should be logged. Default value corresponds to `self.global_step`
"""
# add gpu memory
if self.on_gpu and self.log_gpu_memory:
mem_map = memory.get_memory_profile(self.log_gpu_memory)
metrics.update(mem_map)
# add norms
metrics.update(grad_norm_dic)
# turn all tensors to scalars
scalar_metrics = self.metrics_to_scalars(metrics)
if "step" in scalar_metrics and step is None:
step = scalar_metrics.pop("step")
elif step is None:
# added metrics by Lightning for convenience
scalar_metrics['epoch'] = self.current_epoch
step = step if step is not None else self.global_step
# log actual metrics
if self.is_global_zero and self.logger is not None:
self.logger.agg_and_log_metrics(scalar_metrics, step=step)
self.logger.save()
# track the logged metrics
self.logged_metrics = scalar_metrics
self.dev_debugger.track_logged_metrics_history(scalar_metrics)
def add_progress_bar_metrics(self, metrics):
for k, v in metrics.items():
if isinstance(v, torch.Tensor):

View File

@ -380,7 +380,6 @@ class Trainer(
self.running_loss = TensorRunningAccum(window_length=20)
self.batch_idx = 0
self.progress_bar_metrics = {}
self.logged_metrics = {}
self.num_training_batches = 0
self.num_val_batches = []
self.num_sanity_val_batches = []

View File

@ -76,10 +76,6 @@ class TrainerTrainLoopMixin(ABC):
def add_progress_bar_metrics(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def log_metrics(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def process_output(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@ -186,7 +182,7 @@ class TrainerTrainLoopMixin(ABC):
# --------------------------
# add the metrics to the loggers
if epoch_log_metrics and len(epoch_log_metrics) > 0:
self.log_metrics(epoch_log_metrics, {})
self.logger_connector.log_metrics(epoch_log_metrics, {})
# add metrics to callbacks
self.logger_connector.callback_metrics.update(epoch_callback_metrics)
@ -246,7 +242,7 @@ class TrainerTrainLoopMixin(ABC):
metrics = batch_output.batch_log_metrics
grad_norm_dic = batch_output.grad_norm_dic
if len(metrics) > 0 or len(grad_norm_dic) > 0:
self.log_metrics(metrics, grad_norm_dic)
self.logger_connector.log_metrics(metrics, grad_norm_dic)
def save_loggers_in_training_loop(self, batch_idx):
# when loggers should save to disk