lightning/pytorch_lightning/callbacks/early_stopping.py

227 lines
8.7 KiB
Python
Raw Normal View History

2020-08-20 02:03:22 +00:00
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""
Early Stopping
2020-08-13 13:58:05 +00:00
^^^^^^^^^^^^^^
Monitor a metric and stop training when it stops improving.
"""
import logging
from typing import Any, Dict, Optional, Tuple
import numpy as np
import torch
from pytorch_lightning.callbacks.base import Callback
from pytorch_lightning.utilities import rank_zero_warn
from pytorch_lightning.utilities.exceptions import MisconfigurationException
log = logging.getLogger(__name__)
class EarlyStopping(Callback):
r"""
Monitor a metric and stop training when it stops improving.
Args:
monitor: quantity to be monitored.
min_delta: minimum change in the monitored quantity to qualify as an improvement, i.e. an absolute
change of less than `min_delta`, will count as no improvement.
patience: number of validation checks with no improvement
after which training will be stopped. Under the default configuration, one validation check happens after
every training epoch. However, the frequency of validation can be modified by setting various parameters on
the ``Trainer``, for example ``check_val_every_n_epoch`` and ``val_check_interval``.
.. note::
It must be noted that the patience parameter counts the number of validation checks with
no improvement, and not the number of training epochs. Therefore, with parameters
``check_val_every_n_epoch=10`` and ``patience=3``, the trainer will perform at least 40 training
epochs before being stopped.
verbose: verbosity mode.
mode: one of ``'min'``, ``'max'``. In ``'min'`` mode, training will stop when the quantity
monitored has stopped decreasing and in ``'max'`` mode it will stop when the quantity
monitored has stopped increasing.
strict: whether to crash the training if `monitor` is not found in the validation metrics.
check_finite: When set ``True``, stops training when the monitor becomes NaN or infinite.
stopping_threshold: Stop training immediately once the monitored quantity reaches this threshold.
divergence_threshold: Stop training as soon as the monitored quantity becomes worse than this threshold.
Raises:
MisconfigurationException:
If ``mode`` is none of ``"min"`` or ``"max"``.
RuntimeError:
If the metric ``monitor`` is not available.
Example::
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import EarlyStopping
>>> early_stopping = EarlyStopping('val_loss')
2020-10-04 17:17:09 +00:00
>>> trainer = Trainer(callbacks=[early_stopping])
"""
mode_dict = {
'min': torch.lt,
'max': torch.gt,
}
order_dict = {
'min': "<",
'max': ">",
}
def __init__(
self,
monitor: str = 'early_stop_on',
min_delta: float = 0.0,
patience: int = 3,
verbose: bool = False,
mode: str = 'min',
strict: bool = True,
check_finite: bool = True,
stopping_threshold: Optional[float] = None,
divergence_threshold: Optional[float] = None,
):
super().__init__()
self.monitor = monitor
self.min_delta = min_delta
self.patience = patience
self.verbose = verbose
self.mode = mode
self.strict = strict
self.check_finite = check_finite
self.stopping_threshold = stopping_threshold
self.divergence_threshold = divergence_threshold
Continue Jeremy's early stopping PR #1504 (#2391) * add state_dict for early stopping * move best attr after monitor_op defined * improve early stopping and model checkpoint callbacks * fix formatting * fix attr init order * clean up setting of default_root_dir attr * logger needs default root dir set first * reorg trainer init * remove direct references to checkpoint callback * more fixes * more bugfixes * run callbacks at epoch end * update tests to use on epoch end * PR cleanup * address failing tests * refactor for homogeneity * fix merge conflict * separate tests * tests for early stopping bug regressions * small fixes * revert model checkpoint change * typo fix * fix tests * update train loop * cannot pass an int as default_save_path * refactor log message * fix test case * appease the linter * fix some doctests * move config to callback * fixes from rebase * fixes from rebase * chlog * docs * reformat * formatting * fix * fix * fixes from rebase * add new test for patience * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/callbacks/test_early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * fix formatting * remove enable_early_stop attribute * add state_dict for early stopping * move best attr after monitor_op defined * improve early stopping and model checkpoint callbacks * fix formatting * fix attr init order * clean up setting of default_root_dir attr * logger needs default root dir set first * reorg trainer init * remove direct references to checkpoint callback * more fixes * more bugfixes * run callbacks at epoch end * update tests to use on epoch end * PR cleanup * address failing tests * refactor for homogeneity * fix merge conflict * separate tests * tests for early stopping bug regressions * small fixes * revert model checkpoint change * typo fix * fix tests * update train loop * fix test case * appease the linter * fix some doctests * move config to callback * fixes from rebase * fixes from rebase * chlog * docs * reformat * formatting * fix * fix * fixes from rebase * add new test for patience * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/callbacks/test_early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * fix formatting * remove enable_early_stop attribute * fix test with new epoch indexing * fix progress bar totals * fix off by one error (see #2289) epoch starts at 0 now * added missing imports * fix hpc_save folderpath * fix formatting * fix tests * small fixes from a rebase * fix * tmpdir * tmpdir * tmpdir * wandb * fix merge conflict * add back evaluation after training * test_resume_early_stopping_from_checkpoint TODO * undo the horovod check * update changelog * remove a duplicate test from merge error * try fix dp_resume test * add the logger fix from master * try remove default_root_dir * try mocking numpy * try import numpy in docs test * fix wandb test * pep 8 fix * skip if no amp * dont mock when doctesting * install extra * fix the resume ES test * undo conf.py changes * revert remove comet pickle from test * Update CHANGELOG.md Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update weights_loading.rst * Update weights_loading.rst * Update weights_loading.rst * renamed flag * renamed flag * revert the None check in logger experiment name/version * add the old comments * _experiment * test chckpointing on DDP * skip the ddp test on windows * cloudpickle * renamed flag * renamed flag * parentheses for clarity * apply suggestion max epochs Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jeremy Jordan <jtjordan@ncsu.edu> Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jeremy Jordan <13970565+jeremyjordan@users.noreply.github.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-06-29 01:36:46 +00:00
self.wait_count = 0
self.stopped_epoch = 0
if self.mode not in self.mode_dict:
raise MisconfigurationException(f"`mode` can be {', '.join(self.mode_dict.keys())}, got {self.mode}")
self.min_delta *= 1 if self.monitor_op == torch.gt else -1
torch_inf = torch.tensor(np.Inf)
self.best_score = torch_inf if self.monitor_op == torch.lt else -torch_inf
def _validate_condition_metric(self, logs):
monitor_val = logs.get(self.monitor)
error_msg = (
f'Early stopping conditioned on metric `{self.monitor}` which is not available.'
' Pass in or modify your `EarlyStopping` callback to use any of the following:'
f' `{"`, `".join(list(logs.keys()))}`'
)
if monitor_val is None:
if self.strict:
raise RuntimeError(error_msg)
if self.verbose > 0:
rank_zero_warn(error_msg, RuntimeWarning)
return False
return True
2020-04-27 12:19:19 +00:00
@property
def monitor_op(self):
return self.mode_dict[self.mode]
2020-04-27 12:19:19 +00:00
def on_save_checkpoint(self, trainer, pl_module, checkpoint: Dict[str, Any]) -> Dict[str, Any]:
Continue Jeremy's early stopping PR #1504 (#2391) * add state_dict for early stopping * move best attr after monitor_op defined * improve early stopping and model checkpoint callbacks * fix formatting * fix attr init order * clean up setting of default_root_dir attr * logger needs default root dir set first * reorg trainer init * remove direct references to checkpoint callback * more fixes * more bugfixes * run callbacks at epoch end * update tests to use on epoch end * PR cleanup * address failing tests * refactor for homogeneity * fix merge conflict * separate tests * tests for early stopping bug regressions * small fixes * revert model checkpoint change * typo fix * fix tests * update train loop * cannot pass an int as default_save_path * refactor log message * fix test case * appease the linter * fix some doctests * move config to callback * fixes from rebase * fixes from rebase * chlog * docs * reformat * formatting * fix * fix * fixes from rebase * add new test for patience * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/callbacks/test_early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * fix formatting * remove enable_early_stop attribute * add state_dict for early stopping * move best attr after monitor_op defined * improve early stopping and model checkpoint callbacks * fix formatting * fix attr init order * clean up setting of default_root_dir attr * logger needs default root dir set first * reorg trainer init * remove direct references to checkpoint callback * more fixes * more bugfixes * run callbacks at epoch end * update tests to use on epoch end * PR cleanup * address failing tests * refactor for homogeneity * fix merge conflict * separate tests * tests for early stopping bug regressions * small fixes * revert model checkpoint change * typo fix * fix tests * update train loop * fix test case * appease the linter * fix some doctests * move config to callback * fixes from rebase * fixes from rebase * chlog * docs * reformat * formatting * fix * fix * fixes from rebase * add new test for patience * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/callbacks/test_early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * fix formatting * remove enable_early_stop attribute * fix test with new epoch indexing * fix progress bar totals * fix off by one error (see #2289) epoch starts at 0 now * added missing imports * fix hpc_save folderpath * fix formatting * fix tests * small fixes from a rebase * fix * tmpdir * tmpdir * tmpdir * wandb * fix merge conflict * add back evaluation after training * test_resume_early_stopping_from_checkpoint TODO * undo the horovod check * update changelog * remove a duplicate test from merge error * try fix dp_resume test * add the logger fix from master * try remove default_root_dir * try mocking numpy * try import numpy in docs test * fix wandb test * pep 8 fix * skip if no amp * dont mock when doctesting * install extra * fix the resume ES test * undo conf.py changes * revert remove comet pickle from test * Update CHANGELOG.md Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update weights_loading.rst * Update weights_loading.rst * Update weights_loading.rst * renamed flag * renamed flag * revert the None check in logger experiment name/version * add the old comments * _experiment * test chckpointing on DDP * skip the ddp test on windows * cloudpickle * renamed flag * renamed flag * parentheses for clarity * apply suggestion max epochs Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jeremy Jordan <jtjordan@ncsu.edu> Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jeremy Jordan <13970565+jeremyjordan@users.noreply.github.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-06-29 01:36:46 +00:00
return {
'wait_count': self.wait_count,
'stopped_epoch': self.stopped_epoch,
'best_score': self.best_score,
'patience': self.patience
}
def on_load_checkpoint(self, callback_state: Dict[str, Any]):
self.wait_count = callback_state['wait_count']
self.stopped_epoch = callback_state['stopped_epoch']
self.best_score = callback_state['best_score']
self.patience = callback_state['patience']
Continue Jeremy's early stopping PR #1504 (#2391) * add state_dict for early stopping * move best attr after monitor_op defined * improve early stopping and model checkpoint callbacks * fix formatting * fix attr init order * clean up setting of default_root_dir attr * logger needs default root dir set first * reorg trainer init * remove direct references to checkpoint callback * more fixes * more bugfixes * run callbacks at epoch end * update tests to use on epoch end * PR cleanup * address failing tests * refactor for homogeneity * fix merge conflict * separate tests * tests for early stopping bug regressions * small fixes * revert model checkpoint change * typo fix * fix tests * update train loop * cannot pass an int as default_save_path * refactor log message * fix test case * appease the linter * fix some doctests * move config to callback * fixes from rebase * fixes from rebase * chlog * docs * reformat * formatting * fix * fix * fixes from rebase * add new test for patience * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/callbacks/test_early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * fix formatting * remove enable_early_stop attribute * add state_dict for early stopping * move best attr after monitor_op defined * improve early stopping and model checkpoint callbacks * fix formatting * fix attr init order * clean up setting of default_root_dir attr * logger needs default root dir set first * reorg trainer init * remove direct references to checkpoint callback * more fixes * more bugfixes * run callbacks at epoch end * update tests to use on epoch end * PR cleanup * address failing tests * refactor for homogeneity * fix merge conflict * separate tests * tests for early stopping bug regressions * small fixes * revert model checkpoint change * typo fix * fix tests * update train loop * fix test case * appease the linter * fix some doctests * move config to callback * fixes from rebase * fixes from rebase * chlog * docs * reformat * formatting * fix * fix * fixes from rebase * add new test for patience * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/callbacks/test_early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * fix formatting * remove enable_early_stop attribute * fix test with new epoch indexing * fix progress bar totals * fix off by one error (see #2289) epoch starts at 0 now * added missing imports * fix hpc_save folderpath * fix formatting * fix tests * small fixes from a rebase * fix * tmpdir * tmpdir * tmpdir * wandb * fix merge conflict * add back evaluation after training * test_resume_early_stopping_from_checkpoint TODO * undo the horovod check * update changelog * remove a duplicate test from merge error * try fix dp_resume test * add the logger fix from master * try remove default_root_dir * try mocking numpy * try import numpy in docs test * fix wandb test * pep 8 fix * skip if no amp * dont mock when doctesting * install extra * fix the resume ES test * undo conf.py changes * revert remove comet pickle from test * Update CHANGELOG.md Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update weights_loading.rst * Update weights_loading.rst * Update weights_loading.rst * renamed flag * renamed flag * revert the None check in logger experiment name/version * add the old comments * _experiment * test chckpointing on DDP * skip the ddp test on windows * cloudpickle * renamed flag * renamed flag * parentheses for clarity * apply suggestion max epochs Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jeremy Jordan <jtjordan@ncsu.edu> Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jeremy Jordan <13970565+jeremyjordan@users.noreply.github.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-06-29 01:36:46 +00:00
def on_validation_end(self, trainer, pl_module):
from pytorch_lightning.trainer.states import TrainerState
if trainer.state != TrainerState.FITTING or trainer.sanity_checking:
return
self._run_early_stopping_check(trainer)
def _run_early_stopping_check(self, trainer):
"""
Checks whether the early stopping condition is met
and if so tells the trainer to stop the training.
"""
logs = trainer.callback_metrics
Structured results (train loop only. val loop separate PR) (PR 2/5) (#2615) * r * r * r * patched optimizer closure with sr * patched optimizer closure with sr * patched optimizer closure with sr * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added autoreduce for train step * added auto reduce on train * added auto reduce on train * added auto reduce on train * added auto reduce on train * added auto reduce on train * added auto reduce on train * added hooks * added hooks * added hooks * added hooks * added hooks * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * cache * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * Update pytorch_lightning/callbacks/early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/model_checkpoint.py * Update pytorch_lightning/core/step_result.py * finished tests for structured results on train epoch * finished tests for structured results on train epoch * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com> * Apply suggestions from code review Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com> * Apply suggestions from code review Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com> * simple * finished tests for structured results on train epoch * simple * simple * revert * finished tests for structured results on train epoch * finished tests for structured results on train epoch * Update tests/base/deterministic_model.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * finished tests for structured results on train epoch * docstring typos * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * Update pytorch_lightning/core/step_result.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update pytorch_lightning/overrides/data_parallel.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com>
2020-07-20 23:00:20 +00:00
if (
trainer.fast_dev_run # disable early_stopping with fast_dev_run
or not self._validate_condition_metric(logs) # short circuit if metric not present
):
Continue Jeremy's early stopping PR #1504 (#2391) * add state_dict for early stopping * move best attr after monitor_op defined * improve early stopping and model checkpoint callbacks * fix formatting * fix attr init order * clean up setting of default_root_dir attr * logger needs default root dir set first * reorg trainer init * remove direct references to checkpoint callback * more fixes * more bugfixes * run callbacks at epoch end * update tests to use on epoch end * PR cleanup * address failing tests * refactor for homogeneity * fix merge conflict * separate tests * tests for early stopping bug regressions * small fixes * revert model checkpoint change * typo fix * fix tests * update train loop * cannot pass an int as default_save_path * refactor log message * fix test case * appease the linter * fix some doctests * move config to callback * fixes from rebase * fixes from rebase * chlog * docs * reformat * formatting * fix * fix * fixes from rebase * add new test for patience * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/callbacks/test_early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * fix formatting * remove enable_early_stop attribute * add state_dict for early stopping * move best attr after monitor_op defined * improve early stopping and model checkpoint callbacks * fix formatting * fix attr init order * clean up setting of default_root_dir attr * logger needs default root dir set first * reorg trainer init * remove direct references to checkpoint callback * more fixes * more bugfixes * run callbacks at epoch end * update tests to use on epoch end * PR cleanup * address failing tests * refactor for homogeneity * fix merge conflict * separate tests * tests for early stopping bug regressions * small fixes * revert model checkpoint change * typo fix * fix tests * update train loop * fix test case * appease the linter * fix some doctests * move config to callback * fixes from rebase * fixes from rebase * chlog * docs * reformat * formatting * fix * fix * fixes from rebase * add new test for patience * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/callbacks/test_early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * fix formatting * remove enable_early_stop attribute * fix test with new epoch indexing * fix progress bar totals * fix off by one error (see #2289) epoch starts at 0 now * added missing imports * fix hpc_save folderpath * fix formatting * fix tests * small fixes from a rebase * fix * tmpdir * tmpdir * tmpdir * wandb * fix merge conflict * add back evaluation after training * test_resume_early_stopping_from_checkpoint TODO * undo the horovod check * update changelog * remove a duplicate test from merge error * try fix dp_resume test * add the logger fix from master * try remove default_root_dir * try mocking numpy * try import numpy in docs test * fix wandb test * pep 8 fix * skip if no amp * dont mock when doctesting * install extra * fix the resume ES test * undo conf.py changes * revert remove comet pickle from test * Update CHANGELOG.md Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update weights_loading.rst * Update weights_loading.rst * Update weights_loading.rst * renamed flag * renamed flag * revert the None check in logger experiment name/version * add the old comments * _experiment * test chckpointing on DDP * skip the ddp test on windows * cloudpickle * renamed flag * renamed flag * parentheses for clarity * apply suggestion max epochs Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jeremy Jordan <jtjordan@ncsu.edu> Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jeremy Jordan <13970565+jeremyjordan@users.noreply.github.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-06-29 01:36:46 +00:00
return # short circuit if metric not present
current = logs.get(self.monitor)
Structured results (train loop only. val loop separate PR) (PR 2/5) (#2615) * r * r * r * patched optimizer closure with sr * patched optimizer closure with sr * patched optimizer closure with sr * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added autoreduce for train step * added auto reduce on train * added auto reduce on train * added auto reduce on train * added auto reduce on train * added auto reduce on train * added auto reduce on train * added hooks * added hooks * added hooks * added hooks * added hooks * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * cache * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * Update pytorch_lightning/callbacks/early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/model_checkpoint.py * Update pytorch_lightning/core/step_result.py * finished tests for structured results on train epoch * finished tests for structured results on train epoch * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com> * Apply suggestions from code review Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com> * Apply suggestions from code review Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com> * simple * finished tests for structured results on train epoch * simple * simple * revert * finished tests for structured results on train epoch * finished tests for structured results on train epoch * Update tests/base/deterministic_model.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * finished tests for structured results on train epoch * docstring typos * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * Update pytorch_lightning/core/step_result.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update pytorch_lightning/overrides/data_parallel.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com>
2020-07-20 23:00:20 +00:00
# when in dev debugging
trainer.dev_debugger.track_early_stopping_history(self, current)
Structured results (train loop only. val loop separate PR) (PR 2/5) (#2615) * r * r * r * patched optimizer closure with sr * patched optimizer closure with sr * patched optimizer closure with sr * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added autoreduce for train step * added auto reduce on train * added auto reduce on train * added auto reduce on train * added auto reduce on train * added auto reduce on train * added auto reduce on train * added hooks * added hooks * added hooks * added hooks * added hooks * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * cache * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * Update pytorch_lightning/callbacks/early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/model_checkpoint.py * Update pytorch_lightning/core/step_result.py * finished tests for structured results on train epoch * finished tests for structured results on train epoch * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com> * Apply suggestions from code review Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com> * Apply suggestions from code review Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com> * simple * finished tests for structured results on train epoch * simple * simple * revert * finished tests for structured results on train epoch * finished tests for structured results on train epoch * Update tests/base/deterministic_model.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * finished tests for structured results on train epoch * docstring typos * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * Update pytorch_lightning/core/step_result.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update pytorch_lightning/overrides/data_parallel.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com>
2020-07-20 23:00:20 +00:00
should_stop, reason = self._evalute_stopping_criteria(current)
# stop every ddp process if any world process decides to stop
should_stop = trainer.training_type_plugin.reduce_boolean_decision(should_stop)
trainer.should_stop = trainer.should_stop or should_stop
if should_stop:
self.stopped_epoch = trainer.current_epoch
if reason:
log.info(f"[{trainer.global_rank}] {reason}")
def _evalute_stopping_criteria(self, current: torch.Tensor) -> Tuple[bool, str]:
should_stop = False
reason = None
if self.check_finite and not torch.isfinite(current):
should_stop = True
reason = (
f"Monitored metric {self.monitor} = {current} is not finite."
f" Previous best value was {self.best_score:.3f}. Signaling Trainer to stop."
)
elif self.stopping_threshold is not None and self.monitor_op(current, self.stopping_threshold):
should_stop = True
reason = (
"Stopping threshold reached:"
f" {self.monitor} = {current} {self.order_dict[self.mode]} {self.stopping_threshold}."
" Signaling Trainer to stop."
)
elif self.divergence_threshold is not None and self.monitor_op(-current, -self.divergence_threshold):
should_stop = True
reason = (
"Divergence threshold reached:"
f" {self.monitor} = {current} {self.order_dict[self.mode]} {self.divergence_threshold}."
" Signaling Trainer to stop."
)
elif self.monitor_op(current - self.min_delta, self.best_score):
should_stop = False
Continue Jeremy's early stopping PR #1504 (#2391) * add state_dict for early stopping * move best attr after monitor_op defined * improve early stopping and model checkpoint callbacks * fix formatting * fix attr init order * clean up setting of default_root_dir attr * logger needs default root dir set first * reorg trainer init * remove direct references to checkpoint callback * more fixes * more bugfixes * run callbacks at epoch end * update tests to use on epoch end * PR cleanup * address failing tests * refactor for homogeneity * fix merge conflict * separate tests * tests for early stopping bug regressions * small fixes * revert model checkpoint change * typo fix * fix tests * update train loop * cannot pass an int as default_save_path * refactor log message * fix test case * appease the linter * fix some doctests * move config to callback * fixes from rebase * fixes from rebase * chlog * docs * reformat * formatting * fix * fix * fixes from rebase * add new test for patience * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/callbacks/test_early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * fix formatting * remove enable_early_stop attribute * add state_dict for early stopping * move best attr after monitor_op defined * improve early stopping and model checkpoint callbacks * fix formatting * fix attr init order * clean up setting of default_root_dir attr * logger needs default root dir set first * reorg trainer init * remove direct references to checkpoint callback * more fixes * more bugfixes * run callbacks at epoch end * update tests to use on epoch end * PR cleanup * address failing tests * refactor for homogeneity * fix merge conflict * separate tests * tests for early stopping bug regressions * small fixes * revert model checkpoint change * typo fix * fix tests * update train loop * fix test case * appease the linter * fix some doctests * move config to callback * fixes from rebase * fixes from rebase * chlog * docs * reformat * formatting * fix * fix * fixes from rebase * add new test for patience * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/callbacks/test_early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * fix formatting * remove enable_early_stop attribute * fix test with new epoch indexing * fix progress bar totals * fix off by one error (see #2289) epoch starts at 0 now * added missing imports * fix hpc_save folderpath * fix formatting * fix tests * small fixes from a rebase * fix * tmpdir * tmpdir * tmpdir * wandb * fix merge conflict * add back evaluation after training * test_resume_early_stopping_from_checkpoint TODO * undo the horovod check * update changelog * remove a duplicate test from merge error * try fix dp_resume test * add the logger fix from master * try remove default_root_dir * try mocking numpy * try import numpy in docs test * fix wandb test * pep 8 fix * skip if no amp * dont mock when doctesting * install extra * fix the resume ES test * undo conf.py changes * revert remove comet pickle from test * Update CHANGELOG.md Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update weights_loading.rst * Update weights_loading.rst * Update weights_loading.rst * renamed flag * renamed flag * revert the None check in logger experiment name/version * add the old comments * _experiment * test chckpointing on DDP * skip the ddp test on windows * cloudpickle * renamed flag * renamed flag * parentheses for clarity * apply suggestion max epochs Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jeremy Jordan <jtjordan@ncsu.edu> Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jeremy Jordan <13970565+jeremyjordan@users.noreply.github.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-06-29 01:36:46 +00:00
self.best_score = current
self.wait_count = 0
else:
Continue Jeremy's early stopping PR #1504 (#2391) * add state_dict for early stopping * move best attr after monitor_op defined * improve early stopping and model checkpoint callbacks * fix formatting * fix attr init order * clean up setting of default_root_dir attr * logger needs default root dir set first * reorg trainer init * remove direct references to checkpoint callback * more fixes * more bugfixes * run callbacks at epoch end * update tests to use on epoch end * PR cleanup * address failing tests * refactor for homogeneity * fix merge conflict * separate tests * tests for early stopping bug regressions * small fixes * revert model checkpoint change * typo fix * fix tests * update train loop * cannot pass an int as default_save_path * refactor log message * fix test case * appease the linter * fix some doctests * move config to callback * fixes from rebase * fixes from rebase * chlog * docs * reformat * formatting * fix * fix * fixes from rebase * add new test for patience * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/callbacks/test_early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * fix formatting * remove enable_early_stop attribute * add state_dict for early stopping * move best attr after monitor_op defined * improve early stopping and model checkpoint callbacks * fix formatting * fix attr init order * clean up setting of default_root_dir attr * logger needs default root dir set first * reorg trainer init * remove direct references to checkpoint callback * more fixes * more bugfixes * run callbacks at epoch end * update tests to use on epoch end * PR cleanup * address failing tests * refactor for homogeneity * fix merge conflict * separate tests * tests for early stopping bug regressions * small fixes * revert model checkpoint change * typo fix * fix tests * update train loop * fix test case * appease the linter * fix some doctests * move config to callback * fixes from rebase * fixes from rebase * chlog * docs * reformat * formatting * fix * fix * fixes from rebase * add new test for patience * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/callbacks/test_early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * fix formatting * remove enable_early_stop attribute * fix test with new epoch indexing * fix progress bar totals * fix off by one error (see #2289) epoch starts at 0 now * added missing imports * fix hpc_save folderpath * fix formatting * fix tests * small fixes from a rebase * fix * tmpdir * tmpdir * tmpdir * wandb * fix merge conflict * add back evaluation after training * test_resume_early_stopping_from_checkpoint TODO * undo the horovod check * update changelog * remove a duplicate test from merge error * try fix dp_resume test * add the logger fix from master * try remove default_root_dir * try mocking numpy * try import numpy in docs test * fix wandb test * pep 8 fix * skip if no amp * dont mock when doctesting * install extra * fix the resume ES test * undo conf.py changes * revert remove comet pickle from test * Update CHANGELOG.md Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update weights_loading.rst * Update weights_loading.rst * Update weights_loading.rst * renamed flag * renamed flag * revert the None check in logger experiment name/version * add the old comments * _experiment * test chckpointing on DDP * skip the ddp test on windows * cloudpickle * renamed flag * renamed flag * parentheses for clarity * apply suggestion max epochs Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jeremy Jordan <jtjordan@ncsu.edu> Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jeremy Jordan <13970565+jeremyjordan@users.noreply.github.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-06-29 01:36:46 +00:00
self.wait_count += 1
if self.wait_count >= self.patience:
should_stop = True
reason = (
f"Monitored metric {self.monitor} did not improve in the last {self.wait_count} epochs."
f" Best score: {self.best_score:.3f}. Signaling Trainer to stop."
)
return should_stop, reason