lightning/pytorch_lightning/loggers/neptune.py

398 lines
15 KiB
Python
Raw Normal View History

2020-08-20 02:03:22 +00:00
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Neptune Logger
--------------
"""
from argparse import Namespace
from typing import Any, Dict, Iterable, Optional, Union
import torch
from torch import is_tensor
from pytorch_lightning import _logger as log
from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_experiment
from pytorch_lightning.utilities import _module_available, rank_zero_only
_NEPTUNE_AVAILABLE = _module_available("neptune")
if _NEPTUNE_AVAILABLE:
import neptune
from neptune.experiments import Experiment
else:
# needed for test mocks, these tests shall be updated
neptune, Experiment = None, None
class NeptuneLogger(LightningLoggerBase):
r"""
Log using `Neptune <https://neptune.ai>`_.
Install it with pip:
.. code-block:: bash
pip install neptune-client
The Neptune logger can be used in the online mode or offline (silent) mode.
2020-05-07 13:25:54 +00:00
To log experiment data in online mode, :class:`NeptuneLogger` requires an API key.
In offline mode, the logger does not connect to Neptune.
**ONLINE MODE**
.. testcode::
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import NeptuneLogger
# arguments made to NeptuneLogger are passed on to the neptune.experiments.Experiment class
# We are using an api_key for the anonymous user "neptuner" but you can use your own.
neptune_logger = NeptuneLogger(
api_key='ANONYMOUS',
project_name='shared/pytorch-lightning-integration',
experiment_name='default', # Optional,
params={'max_epochs': 10}, # Optional,
tags=['pytorch-lightning', 'mlp'] # Optional,
)
trainer = Trainer(max_epochs=10, logger=neptune_logger)
**OFFLINE MODE**
.. testcode::
from pytorch_lightning.loggers import NeptuneLogger
# arguments made to NeptuneLogger are passed on to the neptune.experiments.Experiment class
neptune_logger = NeptuneLogger(
offline_mode=True,
project_name='USER_NAME/PROJECT_NAME',
experiment_name='default', # Optional,
params={'max_epochs': 10}, # Optional,
tags=['pytorch-lightning', 'mlp'] # Optional,
)
trainer = Trainer(max_epochs=10, logger=neptune_logger)
Use the logger anywhere in you :class:`~pytorch_lightning.core.lightning.LightningModule` as follows:
.. code-block:: python
class LitModel(LightningModule):
def training_step(self, batch, batch_idx):
# log metrics
self.logger.experiment.log_metric('acc_train', ...)
# log images
self.logger.experiment.log_image('worse_predictions', ...)
# log model checkpoint
self.logger.experiment.log_artifact('model_checkpoint.pt', ...)
self.logger.experiment.whatever_neptune_supports(...)
def any_lightning_module_function_or_hook(self):
self.logger.experiment.log_metric('acc_train', ...)
self.logger.experiment.log_image('worse_predictions', ...)
self.logger.experiment.log_artifact('model_checkpoint.pt', ...)
self.logger.experiment.whatever_neptune_supports(...)
If you want to log objects after the training is finished use ``close_after_fit=False``:
.. code-block:: python
neptune_logger = NeptuneLogger(
...
close_after_fit=False,
...
)
trainer = Trainer(logger=neptune_logger)
trainer.fit()
# Log test metrics
trainer.test(model)
# Log additional metrics
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(y_true, y_pred)
neptune_logger.experiment.log_metric('test_accuracy', accuracy)
# Log charts
from scikitplot.metrics import plot_confusion_matrix
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(16, 12))
plot_confusion_matrix(y_true, y_pred, ax=ax)
neptune_logger.experiment.log_image('confusion_matrix', fig)
# Save checkpoints folder
neptune_logger.experiment.log_artifact('my/checkpoints')
# When you are done, stop the experiment
neptune_logger.experiment.stop()
See Also:
- An `Example experiment <https://ui.neptune.ai/o/shared/org/
pytorch-lightning-integration/e/PYTOR-66/charts>`_ showing the UI of Neptune.
- `Tutorial <https://docs.neptune.ai/integrations/pytorch_lightning.html>`_ on how to use
Pytorch Lightning with Neptune.
Args:
api_key: Required in online mode.
Neptune API token, found on https://neptune.ai.
Read how to get your
`API key <https://docs.neptune.ai/python-api/tutorials/get-started.html#copy-api-token>`_.
It is recommended to keep it in the `NEPTUNE_API_TOKEN`
environment variable and then you can leave ``api_key=None``.
project_name: Required in online mode. Qualified name of a project in a form of
"namespace/project_name" for example "tom/minst-classification".
If ``None``, the value of `NEPTUNE_PROJECT` environment variable will be taken.
You need to create the project in https://neptune.ai first.
offline_mode: Optional default ``False``. If ``True`` no logs will be sent
to Neptune. Usually used for debug purposes.
close_after_fit: Optional default ``True``. If ``False`` the experiment
will not be closed after training and additional metrics,
images or artifacts can be logged. Also, remember to close the experiment explicitly
by running ``neptune_logger.experiment.stop()``.
experiment_name: Optional. Editable name of the experiment.
Name is displayed in the experiments Details (Metadata section) and
in experiments view as a column.
experiment_id: Optional. Default is ``None``. The ID of the existing experiment.
If specified, connect to experiment with experiment_id in project_name.
Input arguments "experiment_name", "params", "properties" and "tags" will be overriden based
on fetched experiment data.
prefix: A string to put at the beginning of metric keys.
\**kwargs: Additional arguments like `params`, `tags`, `properties`, etc. used by
:func:`neptune.Session.create_experiment` can be passed as keyword arguments in this logger.
"""
LOGGER_JOIN_CHAR = '-'
def __init__(
self,
api_key: Optional[str] = None,
project_name: Optional[str] = None,
close_after_fit: Optional[bool] = True,
offline_mode: bool = False,
experiment_name: Optional[str] = None,
experiment_id: Optional[str] = None,
prefix: str = '',
**kwargs
):
if neptune is None:
raise ImportError('You want to use `neptune` logger which is not installed yet,'
' install it with `pip install neptune-client`.')
super().__init__()
self.api_key = api_key
self.project_name = project_name
self.offline_mode = offline_mode
self.close_after_fit = close_after_fit
self.experiment_name = experiment_name
self._prefix = prefix
self._kwargs = kwargs
self.experiment_id = experiment_id
self._experiment = None
log.info(f'NeptuneLogger will work in {"offline" if self.offline_mode else "online"} mode')
def __getstate__(self):
state = self.__dict__.copy()
# Experiment cannot be pickled, and additionally its ID cannot be pickled in offline mode
state['_experiment'] = None
if self.offline_mode:
state['experiment_id'] = None
return state
@property
@rank_zero_experiment
def experiment(self) -> Experiment:
clean v2 docs (#691) * updated gitignore * Update README.md * updated gitignore * updated links in ninja file * updated docs * Update README.md * Update README.md * finished callbacks * finished callbacks * finished callbacks * fixed left menu * added callbacks to menu * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * fixing TensorBoard (#687) * flake8 * fix typo * fix tensorboardlogger drop test_tube dependence * formatting * fix tensorboard & tests * upgrade Tensorboard * test formatting separately * try to fix JIT issue * add tests for 1.4 * added direct links to docs * updated gitignore * updated links in ninja file * updated docs * finished callbacks * finished callbacks * finished callbacks * fixed left menu * added callbacks to menu * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * finished rebase * making private members * making private members * making private members * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * set auto dp if no backend * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * fixed lightning import * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * finished lightning module * finished lightning module * finished lightning module * finished lightning module * added callbacks * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * set auto dp if no backend * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * flake 8 * flake 8 Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-01-17 11:03:31 +00:00
r"""
Actual Neptune object. To use neptune features in your
:class:`~pytorch_lightning.core.lightning.LightningModule` do the following.
clean v2 docs (#691) * updated gitignore * Update README.md * updated gitignore * updated links in ninja file * updated docs * Update README.md * Update README.md * finished callbacks * finished callbacks * finished callbacks * fixed left menu * added callbacks to menu * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * fixing TensorBoard (#687) * flake8 * fix typo * fix tensorboardlogger drop test_tube dependence * formatting * fix tensorboard & tests * upgrade Tensorboard * test formatting separately * try to fix JIT issue * add tests for 1.4 * added direct links to docs * updated gitignore * updated links in ninja file * updated docs * finished callbacks * finished callbacks * finished callbacks * fixed left menu * added callbacks to menu * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * added direct links to docs * finished rebase * making private members * making private members * making private members * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * set auto dp if no backend * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * working on trainer docs * fixed lightning import * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * cleared spaces * finished lightning module * finished lightning module * finished lightning module * finished lightning module * added callbacks * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * set auto dp if no backend * added loggers * added loggers * added loggers * added loggers * added loggers * added loggers * flake 8 * flake 8 Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-01-17 11:03:31 +00:00
Example::
self.logger.experiment.some_neptune_function()
"""
# Note that even though we initialize self._experiment in __init__,
# it may still end up being None after being pickled and un-pickled
if self._experiment is None:
self._experiment = self._create_or_get_experiment()
return self._experiment
@rank_zero_only
def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None:
params = self._convert_params(params)
params = self._flatten_dict(params)
for key, val in params.items():
self.experiment.set_property(f'param__{key}', val)
@rank_zero_only
def log_metrics(
self,
metrics: Dict[str, Union[torch.Tensor, float]],
step: Optional[int] = None
) -> None:
"""
Log metrics (numeric values) in Neptune experiments.
Args:
metrics: Dictionary with metric names as keys and measured quantities as values
step: Step number at which the metrics should be recorded, currently ignored
"""
assert rank_zero_only.rank == 0, 'experiment tried to log from global_rank != 0'
metrics = self._add_prefix(metrics)
for key, val in metrics.items():
# `step` is ignored because Neptune expects strictly increasing step values which
# Lighting does not always guarantee.
self.log_metric(key, val)
@rank_zero_only
def finalize(self, status: str) -> None:
super().finalize(status)
if self.close_after_fit:
self.experiment.stop()
@property
def save_dir(self) -> Optional[str]:
# Neptune does not save any local files
return None
@property
def name(self) -> str:
if self.offline_mode:
return 'offline-name'
else:
return self.experiment.name
@property
def version(self) -> str:
if self.offline_mode:
return 'offline-id-1234'
else:
return self.experiment.id
@rank_zero_only
def log_metric(
self,
metric_name: str,
metric_value: Union[torch.Tensor, float, str],
step: Optional[int] = None
) -> None:
"""
Log metrics (numeric values) in Neptune experiments.
Args:
metric_name: The name of log, i.e. mse, loss, accuracy.
metric_value: The value of the log (data-point).
step: Step number at which the metrics should be recorded, must be strictly increasing
"""
if is_tensor(metric_value):
metric_value = metric_value.cpu().detach()
if step is None:
self.experiment.log_metric(metric_name, metric_value)
else:
self.experiment.log_metric(metric_name, x=step, y=metric_value)
@rank_zero_only
def log_text(self, log_name: str, text: str, step: Optional[int] = None) -> None:
"""
Log text data in Neptune experiments.
Args:
log_name: The name of log, i.e. mse, my_text_data, timing_info.
text: The value of the log (data-point).
step: Step number at which the metrics should be recorded, must be strictly increasing
"""
self.experiment.log_text(log_name, text, step=step)
@rank_zero_only
def log_image(self,
log_name: str,
image: Union[str, Any],
step: Optional[int] = None) -> None:
"""
Log image data in Neptune experiment
Args:
log_name: The name of log, i.e. bboxes, visualisations, sample_images.
image: The value of the log (data-point).
Can be one of the following types: PIL image, `matplotlib.figure.Figure`,
path to image file (str)
step: Step number at which the metrics should be recorded, must be strictly increasing
"""
if step is None:
self.experiment.log_image(log_name, image)
else:
self.experiment.log_image(log_name, x=step, y=image)
@rank_zero_only
def log_artifact(self, artifact: str, destination: Optional[str] = None) -> None:
"""Save an artifact (file) in Neptune experiment storage.
Args:
artifact: A path to the file in local filesystem.
destination: Optional. Default is ``None``. A destination path.
If ``None`` is passed, an artifact file name will be used.
"""
self.experiment.log_artifact(artifact, destination)
@rank_zero_only
def set_property(self, key: str, value: Any) -> None:
"""
Set key-value pair as Neptune experiment property.
Args:
key: Property key.
value: New value of a property.
"""
self.experiment.set_property(key, value)
@rank_zero_only
def append_tags(self, tags: Union[str, Iterable[str]]) -> None:
"""
Appends tags to the neptune experiment.
Args:
tags: Tags to add to the current experiment. If str is passed, a single tag is added.
If multiple - comma separated - str are passed, all of them are added as tags.
If list of str is passed, all elements of the list are added as tags.
"""
if str(tags) == tags:
tags = [tags] # make it as an iterable is if it is not yet
self.experiment.append_tags(*tags)
def _create_or_get_experiment(self):
if self.offline_mode:
project = neptune.Session(backend=neptune.OfflineBackend()).get_project('dry-run/project')
else:
session = neptune.Session.with_default_backend(api_token=self.api_key)
project = session.get_project(self.project_name)
if self.experiment_id is None:
exp = project.create_experiment(name=self.experiment_name, **self._kwargs)
self.experiment_id = exp.id
else:
exp = project.get_experiments(id=self.experiment_id)[0]
self.experiment_name = exp.get_system_properties()['name']
self.params = exp.get_parameters()
self.properties = exp.get_properties()
self.tags = exp.get_tags()
return exp