2020-01-14 03:20:01 +00:00
|
|
|
|
"""
|
2020-04-16 16:04:12 +00:00
|
|
|
|
Neptune
|
|
|
|
|
-------
|
2020-01-14 03:20:01 +00:00
|
|
|
|
"""
|
2020-03-04 14:33:39 +00:00
|
|
|
|
from argparse import Namespace
|
2020-02-25 19:52:39 +00:00
|
|
|
|
from typing import Optional, List, Dict, Any, Union, Iterable
|
2020-01-14 03:20:01 +00:00
|
|
|
|
|
2020-04-16 16:04:12 +00:00
|
|
|
|
|
2020-01-14 03:20:01 +00:00
|
|
|
|
try:
|
|
|
|
|
import neptune
|
2020-02-25 19:52:39 +00:00
|
|
|
|
from neptune.experiments import Experiment
|
2020-05-25 11:31:35 +00:00
|
|
|
|
_NEPTUNE_AVAILABLE = True
|
2020-03-19 13:14:29 +00:00
|
|
|
|
except ImportError: # pragma: no-cover
|
2020-05-25 11:31:35 +00:00
|
|
|
|
neptune = None
|
|
|
|
|
Experiment = None
|
|
|
|
|
_NEPTUNE_AVAILABLE = False
|
2020-01-14 03:20:01 +00:00
|
|
|
|
|
2020-03-03 01:49:14 +00:00
|
|
|
|
import torch
|
2020-01-14 03:20:01 +00:00
|
|
|
|
from torch import is_tensor
|
|
|
|
|
|
2020-03-17 22:44:00 +00:00
|
|
|
|
from pytorch_lightning import _logger as log
|
2020-06-30 22:09:16 +00:00
|
|
|
|
from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_experiment
|
2020-04-24 21:21:00 +00:00
|
|
|
|
from pytorch_lightning.utilities import rank_zero_only
|
2020-01-14 03:20:01 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class NeptuneLogger(LightningLoggerBase):
|
2020-02-11 04:55:22 +00:00
|
|
|
|
r"""
|
2020-04-16 16:04:12 +00:00
|
|
|
|
Log using `Neptune <https://neptune.ai>`_. Install it with pip:
|
|
|
|
|
|
|
|
|
|
.. code-block:: bash
|
|
|
|
|
|
|
|
|
|
pip install neptune-client
|
|
|
|
|
|
|
|
|
|
The Neptune logger can be used in the online mode or offline (silent) mode.
|
2020-05-07 13:25:54 +00:00
|
|
|
|
To log experiment data in online mode, :class:`NeptuneLogger` requires an API key.
|
2020-05-10 17:19:18 +00:00
|
|
|
|
In offline mode, the logger does not connect to Neptune.
|
2020-04-16 16:04:12 +00:00
|
|
|
|
|
|
|
|
|
**ONLINE MODE**
|
|
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
>>> from pytorch_lightning import Trainer
|
|
|
|
|
>>> from pytorch_lightning.loggers import NeptuneLogger
|
|
|
|
|
>>> # arguments made to NeptuneLogger are passed on to the neptune.experiments.Experiment class
|
|
|
|
|
>>> # We are using an api_key for the anonymous user "neptuner" but you can use your own.
|
|
|
|
|
>>> neptune_logger = NeptuneLogger(
|
|
|
|
|
... api_key='ANONYMOUS',
|
|
|
|
|
... project_name='shared/pytorch-lightning-integration',
|
|
|
|
|
... experiment_name='default', # Optional,
|
|
|
|
|
... params={'max_epochs': 10}, # Optional,
|
|
|
|
|
... tags=['pytorch-lightning', 'mlp'] # Optional,
|
|
|
|
|
... )
|
|
|
|
|
>>> trainer = Trainer(max_epochs=10, logger=neptune_logger)
|
|
|
|
|
|
|
|
|
|
**OFFLINE MODE**
|
|
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
>>> from pytorch_lightning.loggers import NeptuneLogger
|
|
|
|
|
>>> # arguments made to NeptuneLogger are passed on to the neptune.experiments.Experiment class
|
|
|
|
|
>>> neptune_logger = NeptuneLogger(
|
|
|
|
|
... offline_mode=True,
|
|
|
|
|
... project_name='USER_NAME/PROJECT_NAME',
|
|
|
|
|
... experiment_name='default', # Optional,
|
|
|
|
|
... params={'max_epochs': 10}, # Optional,
|
|
|
|
|
... tags=['pytorch-lightning', 'mlp'] # Optional,
|
|
|
|
|
... )
|
|
|
|
|
>>> trainer = Trainer(max_epochs=10, logger=neptune_logger)
|
|
|
|
|
|
|
|
|
|
Use the logger anywhere in you :class:`~pytorch_lightning.core.lightning.LightningModule` as follows:
|
|
|
|
|
|
|
|
|
|
>>> from pytorch_lightning import LightningModule
|
|
|
|
|
>>> class LitModel(LightningModule):
|
|
|
|
|
... def training_step(self, batch, batch_idx):
|
|
|
|
|
... # log metrics
|
|
|
|
|
... self.logger.experiment.log_metric('acc_train', ...)
|
|
|
|
|
... # log images
|
|
|
|
|
... self.logger.experiment.log_image('worse_predictions', ...)
|
|
|
|
|
... # log model checkpoint
|
|
|
|
|
... self.logger.experiment.log_artifact('model_checkpoint.pt', ...)
|
|
|
|
|
... self.logger.experiment.whatever_neptune_supports(...)
|
|
|
|
|
...
|
|
|
|
|
... def any_lightning_module_function_or_hook(self):
|
|
|
|
|
... self.logger.experiment.log_metric('acc_train', ...)
|
|
|
|
|
... self.logger.experiment.log_image('worse_predictions', ...)
|
|
|
|
|
... self.logger.experiment.log_artifact('model_checkpoint.pt', ...)
|
|
|
|
|
... self.logger.experiment.whatever_neptune_supports(...)
|
|
|
|
|
|
2020-05-10 17:19:18 +00:00
|
|
|
|
If you want to log objects after the training is finished use ``close_after_fit=False``:
|
2020-04-16 16:04:12 +00:00
|
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
neptune_logger = NeptuneLogger(
|
|
|
|
|
...
|
|
|
|
|
close_after_fit=False,
|
|
|
|
|
...
|
|
|
|
|
)
|
|
|
|
|
trainer = Trainer(logger=neptune_logger)
|
|
|
|
|
trainer.fit()
|
|
|
|
|
|
|
|
|
|
# Log test metrics
|
|
|
|
|
trainer.test(model)
|
|
|
|
|
|
|
|
|
|
# Log additional metrics
|
|
|
|
|
from sklearn.metrics import accuracy_score
|
|
|
|
|
|
|
|
|
|
accuracy = accuracy_score(y_true, y_pred)
|
|
|
|
|
neptune_logger.experiment.log_metric('test_accuracy', accuracy)
|
|
|
|
|
|
|
|
|
|
# Log charts
|
|
|
|
|
from scikitplot.metrics import plot_confusion_matrix
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
fig, ax = plt.subplots(figsize=(16, 12))
|
|
|
|
|
plot_confusion_matrix(y_true, y_pred, ax=ax)
|
|
|
|
|
neptune_logger.experiment.log_image('confusion_matrix', fig)
|
|
|
|
|
|
|
|
|
|
# Save checkpoints folder
|
|
|
|
|
neptune_logger.experiment.log_artifact('my/checkpoints')
|
|
|
|
|
|
|
|
|
|
# When you are done, stop the experiment
|
|
|
|
|
neptune_logger.experiment.stop()
|
|
|
|
|
|
|
|
|
|
See Also:
|
|
|
|
|
- An `Example experiment <https://ui.neptune.ai/o/shared/org/
|
|
|
|
|
pytorch-lightning-integration/e/PYTOR-66/charts>`_ showing the UI of Neptune.
|
|
|
|
|
- `Tutorial <https://docs.neptune.ai/integrations/pytorch_lightning.html>`_ on how to use
|
|
|
|
|
Pytorch Lightning with Neptune.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
api_key: Required in online mode.
|
|
|
|
|
Neptune API token, found on https://neptune.ai.
|
|
|
|
|
Read how to get your
|
|
|
|
|
`API key <https://docs.neptune.ai/python-api/tutorials/get-started.html#copy-api-token>`_.
|
|
|
|
|
It is recommended to keep it in the `NEPTUNE_API_TOKEN`
|
|
|
|
|
environment variable and then you can leave ``api_key=None``.
|
|
|
|
|
project_name: Required in online mode. Qualified name of a project in a form of
|
|
|
|
|
"namespace/project_name" for example "tom/minst-classification".
|
|
|
|
|
If ``None``, the value of `NEPTUNE_PROJECT` environment variable will be taken.
|
|
|
|
|
You need to create the project in https://neptune.ai first.
|
2020-05-10 17:19:18 +00:00
|
|
|
|
offline_mode: Optional default ``False``. If ``True`` no logs will be sent
|
2020-04-16 16:04:12 +00:00
|
|
|
|
to Neptune. Usually used for debug purposes.
|
|
|
|
|
close_after_fit: Optional default ``True``. If ``False`` the experiment
|
|
|
|
|
will not be closed after training and additional metrics,
|
|
|
|
|
images or artifacts can be logged. Also, remember to close the experiment explicitly
|
|
|
|
|
by running ``neptune_logger.experiment.stop()``.
|
|
|
|
|
experiment_name: Optional. Editable name of the experiment.
|
|
|
|
|
Name is displayed in the experiment’s Details (Metadata section) and
|
|
|
|
|
in experiments view as a column.
|
|
|
|
|
upload_source_files: Optional. List of source files to be uploaded.
|
|
|
|
|
Must be list of str or single str. Uploaded sources are displayed
|
|
|
|
|
in the experiment’s Source code tab.
|
|
|
|
|
If ``None`` is passed, the Python file from which the experiment was created will be uploaded.
|
|
|
|
|
Pass an empty list (``[]``) to upload no files.
|
|
|
|
|
Unix style pathname pattern expansion is supported.
|
|
|
|
|
For example, you can pass ``'\*.py'``
|
|
|
|
|
to upload all python source files from the current directory.
|
|
|
|
|
For recursion lookup use ``'\**/\*.py'`` (for Python 3.5 and later).
|
|
|
|
|
For more information see :mod:`glob` library.
|
|
|
|
|
params: Optional. Parameters of the experiment.
|
|
|
|
|
After experiment creation params are read-only.
|
|
|
|
|
Parameters are displayed in the experiment’s Parameters section and
|
|
|
|
|
each key-value pair can be viewed in the experiments view as a column.
|
|
|
|
|
properties: Optional. Default is ``{}``. Properties of the experiment.
|
|
|
|
|
They are editable after the experiment is created.
|
|
|
|
|
Properties are displayed in the experiment’s Details section and
|
|
|
|
|
each key-value pair can be viewed in the experiments view as a column.
|
|
|
|
|
tags: Optional. Default is ``[]``. Must be list of str. Tags of the experiment.
|
|
|
|
|
They are editable after the experiment is created (see: ``append_tag()`` and ``remove_tag()``).
|
|
|
|
|
Tags are displayed in the experiment’s Details section and can be viewed
|
|
|
|
|
in the experiments view as a column.
|
2020-02-11 04:55:22 +00:00
|
|
|
|
"""
|
2020-05-10 17:19:18 +00:00
|
|
|
|
|
2020-04-15 00:32:33 +00:00
|
|
|
|
def __init__(self,
|
|
|
|
|
api_key: Optional[str] = None,
|
|
|
|
|
project_name: Optional[str] = None,
|
|
|
|
|
close_after_fit: Optional[bool] = True,
|
2020-04-15 15:14:29 +00:00
|
|
|
|
offline_mode: bool = False,
|
2020-03-14 17:02:40 +00:00
|
|
|
|
experiment_name: Optional[str] = None,
|
2020-04-15 00:32:33 +00:00
|
|
|
|
upload_source_files: Optional[List[str]] = None,
|
|
|
|
|
params: Optional[Dict[str, Any]] = None,
|
|
|
|
|
properties: Optional[Dict[str, Any]] = None,
|
|
|
|
|
tags: Optional[List[str]] = None,
|
|
|
|
|
**kwargs):
|
2020-05-25 11:31:35 +00:00
|
|
|
|
if not _NEPTUNE_AVAILABLE:
|
|
|
|
|
raise ImportError('You want to use `neptune` logger which is not installed yet,'
|
|
|
|
|
' install it with `pip install neptune-client`.')
|
2020-01-14 03:20:01 +00:00
|
|
|
|
super().__init__()
|
|
|
|
|
self.api_key = api_key
|
|
|
|
|
self.project_name = project_name
|
|
|
|
|
self.offline_mode = offline_mode
|
2020-03-14 17:02:40 +00:00
|
|
|
|
self.close_after_fit = close_after_fit
|
2020-01-14 03:20:01 +00:00
|
|
|
|
self.experiment_name = experiment_name
|
|
|
|
|
self.upload_source_files = upload_source_files
|
|
|
|
|
self.params = params
|
|
|
|
|
self.properties = properties
|
|
|
|
|
self.tags = tags
|
|
|
|
|
self._kwargs = kwargs
|
2020-05-10 17:19:18 +00:00
|
|
|
|
self._experiment_id = None
|
|
|
|
|
self._experiment = self._create_or_get_experiment()
|
2020-01-14 03:20:01 +00:00
|
|
|
|
|
2020-05-10 17:19:18 +00:00
|
|
|
|
log.info(f'NeptuneLogger will work in {"offline" if self.offline_mode else "online"} mode')
|
2020-01-14 03:20:01 +00:00
|
|
|
|
|
2020-03-14 17:02:40 +00:00
|
|
|
|
def __getstate__(self):
|
|
|
|
|
state = self.__dict__.copy()
|
2020-05-10 17:19:18 +00:00
|
|
|
|
|
|
|
|
|
# Experiment cannot be pickled, and additionally its ID cannot be pickled in offline mode
|
2020-03-14 17:02:40 +00:00
|
|
|
|
state['_experiment'] = None
|
2020-05-10 17:19:18 +00:00
|
|
|
|
if self.offline_mode:
|
|
|
|
|
state['_experiment_id'] = None
|
|
|
|
|
|
2020-03-14 17:02:40 +00:00
|
|
|
|
return state
|
|
|
|
|
|
2020-01-14 03:20:01 +00:00
|
|
|
|
@property
|
2020-06-30 22:09:16 +00:00
|
|
|
|
@rank_zero_experiment
|
2020-02-25 19:52:39 +00:00
|
|
|
|
def experiment(self) -> Experiment:
|
2020-01-17 11:03:31 +00:00
|
|
|
|
r"""
|
2020-04-16 16:04:12 +00:00
|
|
|
|
Actual Neptune object. To use neptune features in your
|
|
|
|
|
:class:`~pytorch_lightning.core.lightning.LightningModule` do the following.
|
2020-01-17 11:03:31 +00:00
|
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
|
|
self.logger.experiment.some_neptune_function()
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
2020-05-10 17:19:18 +00:00
|
|
|
|
# Note that even though we initialize self._experiment in __init__,
|
|
|
|
|
# it may still end up being None after being pickled and un-pickled
|
2020-03-14 17:02:40 +00:00
|
|
|
|
if self._experiment is None:
|
2020-05-10 17:19:18 +00:00
|
|
|
|
self._experiment = self._create_or_get_experiment()
|
|
|
|
|
|
2020-01-14 03:20:01 +00:00
|
|
|
|
return self._experiment
|
|
|
|
|
|
|
|
|
|
@rank_zero_only
|
2020-03-04 14:33:39 +00:00
|
|
|
|
def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None:
|
|
|
|
|
params = self._convert_params(params)
|
2020-03-19 13:15:47 +00:00
|
|
|
|
params = self._flatten_dict(params)
|
2020-03-04 14:33:39 +00:00
|
|
|
|
for key, val in params.items():
|
2020-03-03 01:49:14 +00:00
|
|
|
|
self.experiment.set_property(f'param__{key}', val)
|
2020-01-14 03:20:01 +00:00
|
|
|
|
|
|
|
|
|
@rank_zero_only
|
2020-03-03 01:49:14 +00:00
|
|
|
|
def log_metrics(
|
|
|
|
|
self,
|
|
|
|
|
metrics: Dict[str, Union[torch.Tensor, float]],
|
|
|
|
|
step: Optional[int] = None
|
2020-03-04 14:33:39 +00:00
|
|
|
|
) -> None:
|
2020-04-16 16:04:12 +00:00
|
|
|
|
"""
|
|
|
|
|
Log metrics (numeric values) in Neptune experiments.
|
2020-01-14 03:20:01 +00:00
|
|
|
|
|
2020-02-25 19:52:39 +00:00
|
|
|
|
Args:
|
|
|
|
|
metrics: Dictionary with metric names as keys and measured quantities as values
|
|
|
|
|
step: Step number at which the metrics should be recorded, must be strictly increasing
|
2020-01-14 03:20:01 +00:00
|
|
|
|
"""
|
2020-06-30 22:09:16 +00:00
|
|
|
|
assert rank_zero_only.rank == 0, 'experiment tried to log from global_rank != 0'
|
2020-01-14 03:20:01 +00:00
|
|
|
|
for key, val in metrics.items():
|
2020-03-03 01:49:14 +00:00
|
|
|
|
self.log_metric(key, val, step=step)
|
2020-01-14 03:20:01 +00:00
|
|
|
|
|
|
|
|
|
@rank_zero_only
|
2020-03-04 14:33:39 +00:00
|
|
|
|
def finalize(self, status: str) -> None:
|
2020-04-15 00:32:33 +00:00
|
|
|
|
super().finalize(status)
|
2020-03-14 17:02:40 +00:00
|
|
|
|
if self.close_after_fit:
|
|
|
|
|
self.experiment.stop()
|
2020-01-14 03:20:01 +00:00
|
|
|
|
|
|
|
|
|
@property
|
2020-02-25 19:52:39 +00:00
|
|
|
|
def name(self) -> str:
|
2020-05-10 17:19:18 +00:00
|
|
|
|
if self.offline_mode:
|
2020-03-03 01:49:14 +00:00
|
|
|
|
return 'offline-name'
|
2020-01-14 03:20:01 +00:00
|
|
|
|
else:
|
|
|
|
|
return self.experiment.name
|
|
|
|
|
|
|
|
|
|
@property
|
2020-02-25 19:52:39 +00:00
|
|
|
|
def version(self) -> str:
|
2020-05-10 17:19:18 +00:00
|
|
|
|
if self.offline_mode:
|
2020-03-03 01:49:14 +00:00
|
|
|
|
return 'offline-id-1234'
|
2020-01-14 03:20:01 +00:00
|
|
|
|
else:
|
|
|
|
|
return self.experiment.id
|
|
|
|
|
|
|
|
|
|
@rank_zero_only
|
2020-03-03 01:49:14 +00:00
|
|
|
|
def log_metric(
|
|
|
|
|
self,
|
|
|
|
|
metric_name: str,
|
|
|
|
|
metric_value: Union[torch.Tensor, float, str],
|
|
|
|
|
step: Optional[int] = None
|
2020-03-04 14:33:39 +00:00
|
|
|
|
) -> None:
|
2020-04-16 16:04:12 +00:00
|
|
|
|
"""
|
|
|
|
|
Log metrics (numeric values) in Neptune experiments.
|
2020-01-14 03:20:01 +00:00
|
|
|
|
|
2020-02-25 19:52:39 +00:00
|
|
|
|
Args:
|
2020-04-16 16:04:12 +00:00
|
|
|
|
metric_name: The name of log, i.e. mse, loss, accuracy.
|
2020-02-25 19:52:39 +00:00
|
|
|
|
metric_value: The value of the log (data-point).
|
|
|
|
|
step: Step number at which the metrics should be recorded, must be strictly increasing
|
2020-01-14 03:20:01 +00:00
|
|
|
|
"""
|
2020-03-03 01:49:14 +00:00
|
|
|
|
if is_tensor(metric_value):
|
|
|
|
|
metric_value = metric_value.cpu().detach()
|
|
|
|
|
|
2020-01-14 03:20:01 +00:00
|
|
|
|
if step is None:
|
|
|
|
|
self.experiment.log_metric(metric_name, metric_value)
|
|
|
|
|
else:
|
|
|
|
|
self.experiment.log_metric(metric_name, x=step, y=metric_value)
|
|
|
|
|
|
|
|
|
|
@rank_zero_only
|
2020-03-04 14:33:39 +00:00
|
|
|
|
def log_text(self, log_name: str, text: str, step: Optional[int] = None) -> None:
|
2020-04-16 16:04:12 +00:00
|
|
|
|
"""
|
|
|
|
|
Log text data in Neptune experiments.
|
2020-01-14 03:20:01 +00:00
|
|
|
|
|
2020-02-25 19:52:39 +00:00
|
|
|
|
Args:
|
2020-04-16 16:04:12 +00:00
|
|
|
|
log_name: The name of log, i.e. mse, my_text_data, timing_info.
|
2020-02-25 19:52:39 +00:00
|
|
|
|
text: The value of the log (data-point).
|
|
|
|
|
step: Step number at which the metrics should be recorded, must be strictly increasing
|
2020-01-14 03:20:01 +00:00
|
|
|
|
"""
|
2020-03-03 01:49:14 +00:00
|
|
|
|
self.log_metric(log_name, text, step=step)
|
2020-01-14 03:20:01 +00:00
|
|
|
|
|
|
|
|
|
@rank_zero_only
|
2020-04-16 16:04:12 +00:00
|
|
|
|
def log_image(self,
|
|
|
|
|
log_name: str,
|
2020-06-30 23:35:54 +00:00
|
|
|
|
image: Union[str, Any],
|
2020-04-16 16:04:12 +00:00
|
|
|
|
step: Optional[int] = None) -> None:
|
|
|
|
|
"""
|
|
|
|
|
Log image data in Neptune experiment
|
2020-01-14 03:20:01 +00:00
|
|
|
|
|
2020-02-25 19:52:39 +00:00
|
|
|
|
Args:
|
|
|
|
|
log_name: The name of log, i.e. bboxes, visualisations, sample_images.
|
2020-04-16 16:04:12 +00:00
|
|
|
|
image: The value of the log (data-point).
|
|
|
|
|
Can be one of the following types: PIL image, `matplotlib.figure.Figure`,
|
|
|
|
|
path to image file (str)
|
2020-02-25 19:52:39 +00:00
|
|
|
|
step: Step number at which the metrics should be recorded, must be strictly increasing
|
2020-01-14 03:20:01 +00:00
|
|
|
|
"""
|
|
|
|
|
if step is None:
|
|
|
|
|
self.experiment.log_image(log_name, image)
|
|
|
|
|
else:
|
|
|
|
|
self.experiment.log_image(log_name, x=step, y=image)
|
|
|
|
|
|
|
|
|
|
@rank_zero_only
|
2020-03-04 14:33:39 +00:00
|
|
|
|
def log_artifact(self, artifact: str, destination: Optional[str] = None) -> None:
|
2020-01-14 03:20:01 +00:00
|
|
|
|
"""Save an artifact (file) in Neptune experiment storage.
|
|
|
|
|
|
2020-02-25 19:52:39 +00:00
|
|
|
|
Args:
|
|
|
|
|
artifact: A path to the file in local filesystem.
|
2020-04-16 16:04:12 +00:00
|
|
|
|
destination: Optional. Default is ``None``. A destination path.
|
|
|
|
|
If ``None`` is passed, an artifact file name will be used.
|
2020-01-14 03:20:01 +00:00
|
|
|
|
"""
|
|
|
|
|
self.experiment.log_artifact(artifact, destination)
|
|
|
|
|
|
|
|
|
|
@rank_zero_only
|
2020-03-04 14:33:39 +00:00
|
|
|
|
def set_property(self, key: str, value: Any) -> None:
|
2020-04-16 16:04:12 +00:00
|
|
|
|
"""
|
|
|
|
|
Set key-value pair as Neptune experiment property.
|
2020-01-14 03:20:01 +00:00
|
|
|
|
|
2020-02-25 19:52:39 +00:00
|
|
|
|
Args:
|
|
|
|
|
key: Property key.
|
|
|
|
|
value: New value of a property.
|
2020-01-14 03:20:01 +00:00
|
|
|
|
"""
|
|
|
|
|
self.experiment.set_property(key, value)
|
|
|
|
|
|
|
|
|
|
@rank_zero_only
|
2020-03-04 14:33:39 +00:00
|
|
|
|
def append_tags(self, tags: Union[str, Iterable[str]]) -> None:
|
2020-04-16 16:04:12 +00:00
|
|
|
|
"""
|
|
|
|
|
Appends tags to the neptune experiment.
|
2020-01-14 03:20:01 +00:00
|
|
|
|
|
2020-02-25 19:52:39 +00:00
|
|
|
|
Args:
|
2020-04-16 16:04:12 +00:00
|
|
|
|
tags: Tags to add to the current experiment. If str is passed, a single tag is added.
|
2020-02-25 19:52:39 +00:00
|
|
|
|
If multiple - comma separated - str are passed, all of them are added as tags.
|
|
|
|
|
If list of str is passed, all elements of the list are added as tags.
|
2020-01-14 03:20:01 +00:00
|
|
|
|
"""
|
2020-03-03 01:49:14 +00:00
|
|
|
|
if str(tags) == tags:
|
2020-01-14 03:20:01 +00:00
|
|
|
|
tags = [tags] # make it as an iterable is if it is not yet
|
|
|
|
|
self.experiment.append_tags(*tags)
|
2020-05-10 17:19:18 +00:00
|
|
|
|
|
|
|
|
|
def _create_or_get_experiment(self):
|
|
|
|
|
if self.offline_mode:
|
|
|
|
|
project = neptune.Session(backend=neptune.OfflineBackend()).get_project('dry-run/project')
|
|
|
|
|
else:
|
|
|
|
|
session = neptune.Session.with_default_backend(api_token=self.api_key)
|
|
|
|
|
project = session.get_project(self.project_name)
|
|
|
|
|
|
|
|
|
|
if self._experiment_id is None:
|
|
|
|
|
exp = project.create_experiment(
|
|
|
|
|
name=self.experiment_name,
|
|
|
|
|
params=self.params,
|
|
|
|
|
properties=self.properties,
|
|
|
|
|
tags=self.tags,
|
|
|
|
|
upload_source_files=self.upload_source_files,
|
|
|
|
|
**self._kwargs)
|
|
|
|
|
else:
|
|
|
|
|
exp = project.get_experiments(id=self._experiment_id)[0]
|
|
|
|
|
|
|
|
|
|
self._experiment_id = exp.id
|
|
|
|
|
return exp
|