2021-01-13 09:42:49 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import inspect
|
|
|
|
|
|
|
|
from pytorch_lightning import seed_everything, Trainer
|
|
|
|
from pytorch_lightning.callbacks import Callback, LambdaCallback
|
2021-02-08 10:52:02 +00:00
|
|
|
from tests.helpers.boring_model import BoringModel
|
2021-01-13 09:42:49 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_lambda_call(tmpdir):
|
|
|
|
seed_everything(42)
|
|
|
|
|
|
|
|
class CustomModel(BoringModel):
|
2021-02-06 12:28:26 +00:00
|
|
|
|
2021-01-13 09:42:49 +00:00
|
|
|
def on_train_epoch_start(self):
|
|
|
|
if self.current_epoch > 1:
|
|
|
|
raise KeyboardInterrupt
|
|
|
|
|
|
|
|
checker = set()
|
|
|
|
hooks = [m for m, _ in inspect.getmembers(Callback, predicate=inspect.isfunction)]
|
|
|
|
hooks_args = {h: (lambda x: lambda *args: checker.add(x))(h) for h in hooks}
|
|
|
|
hooks_args["on_save_checkpoint"] = (lambda x: lambda *args: [checker.add(x)])("on_save_checkpoint")
|
|
|
|
|
|
|
|
model = CustomModel()
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
max_epochs=1,
|
|
|
|
limit_train_batches=1,
|
|
|
|
limit_val_batches=1,
|
|
|
|
callbacks=[LambdaCallback(**hooks_args)],
|
|
|
|
)
|
|
|
|
results = trainer.fit(model)
|
|
|
|
assert results
|
|
|
|
|
|
|
|
model = CustomModel()
|
|
|
|
ckpt_path = trainer.checkpoint_callback.best_model_path
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
max_epochs=3,
|
|
|
|
limit_train_batches=1,
|
|
|
|
limit_val_batches=1,
|
|
|
|
limit_test_batches=1,
|
|
|
|
resume_from_checkpoint=ckpt_path,
|
|
|
|
callbacks=[LambdaCallback(**hooks_args)],
|
|
|
|
)
|
|
|
|
results = trainer.fit(model)
|
|
|
|
trainer.test(model)
|
|
|
|
|
|
|
|
assert results
|
|
|
|
assert checker == set(hooks)
|