# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from pytorch_lightning import seed_everything, Trainer from pytorch_lightning.callbacks import Callback, LambdaCallback from tests.helpers.boring_model import BoringModel def test_lambda_call(tmpdir): seed_everything(42) class CustomModel(BoringModel): def on_train_epoch_start(self): if self.current_epoch > 1: raise KeyboardInterrupt checker = set() hooks = [m for m, _ in inspect.getmembers(Callback, predicate=inspect.isfunction)] hooks_args = {h: (lambda x: lambda *args: checker.add(x))(h) for h in hooks} hooks_args["on_save_checkpoint"] = (lambda x: lambda *args: [checker.add(x)])("on_save_checkpoint") model = CustomModel() trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=1, limit_val_batches=1, callbacks=[LambdaCallback(**hooks_args)], ) results = trainer.fit(model) assert results model = CustomModel() ckpt_path = trainer.checkpoint_callback.best_model_path trainer = Trainer( default_root_dir=tmpdir, max_epochs=3, limit_train_batches=1, limit_val_batches=1, limit_test_batches=1, resume_from_checkpoint=ckpt_path, callbacks=[LambdaCallback(**hooks_args)], ) results = trainer.fit(model) trainer.test(model) assert results assert checker == set(hooks)