lightning/tests/base/model_valid_epoch_ends.py

101 lines
3.6 KiB
Python
Raw Normal View History

from abc import ABC
import torch
class ValidationEpochEndVariations(ABC):
"""
Houses all variations of validation_epoch_end steps
"""
def validation_epoch_end_no_monitor(self, outputs):
"""
Called at the end of validation to aggregate outputs
Args:
outputs: list of individual outputs of each validation step
"""
# if returned a scalar from validation_step, outputs is a list of tensor scalars
# we return just the average in this case (if we want)
def _mean(res, key):
# recursive mean for multilevel dicts
return torch.stack([x[key] if isinstance(x, dict) else _mean(x, key) for x in res]).mean()
val_acc_mean = _mean(outputs, 'val_acc')
# alternate between tensor and scalar
if self.current_epoch % 2 == 0:
val_acc_mean = val_acc_mean.item()
metrics_dict = {'val_acc': val_acc_mean}
results = {'progress_bar': metrics_dict, 'log': metrics_dict}
return results
def validation_epoch_end(self, outputs):
"""
Called at the end of validation to aggregate outputs
Args:
outputs: list of individual outputs of each validation step
"""
# if returned a scalar from validation_step, outputs is a list of tensor scalars
# we return just the average in this case (if we want)
def _mean(res, key):
# recursive mean for multilevel dicts
return torch.stack([x[key] if isinstance(x, dict) else _mean(x, key) for x in res]).mean()
val_loss_mean = _mean(outputs, 'val_loss')
val_acc_mean = _mean(outputs, 'val_acc')
# alternate between tensor and scalar
if self.current_epoch % 2 == 0:
val_loss_mean = val_loss_mean.item()
val_acc_mean = val_acc_mean.item()
metrics_dict = {'early_stop_on': val_loss_mean, 'val_acc': val_acc_mean}
results = {'progress_bar': metrics_dict, 'log': metrics_dict}
return results
2020-09-20 00:00:50 +00:00
def validation_epoch_end_return_none(self, outputs):
"""
Called at the end of validation to aggregate outputs
Args:
outputs: list of individual outputs of each validation step
"""
# if returned a scalar from validation_step, outputs is a list of tensor scalars
# we return just the average in this case (if we want)
def _mean(res, key):
# recursive mean for multilevel dicts
return torch.stack([x[key] if isinstance(x, dict) else _mean(x, key) for x in res]).mean()
return None
def validation_epoch_end__multiple_dataloaders(self, outputs):
"""
Called at the end of validation to aggregate outputs
Args:
outputs: list of individual outputs of each validation step
"""
# if returned a scalar from validation_step, outputs is a list of tensor scalars
# we return just the average in this case (if we want)
def _mean(res, key):
return torch.stack([x[key] for x in res]).mean()
pbar = {}
logs = {}
for dl_output_list in outputs:
output_keys = dl_output_list[0].keys()
output_keys = [x for x in output_keys if 'val_' in x]
for key in output_keys:
metric_out = _mean(dl_output_list, key)
pbar[key] = metric_out
logs[key] = metric_out
results = {
'val_loss': torch.stack([v for k, v in pbar.items() if k.startswith('val_loss')]).mean(),
'progress_bar': pbar,
'log': logs,
}
return results