lightning/tests/base/model_valid_epoch_ends.py

48 lines
1.7 KiB
Python
Raw Normal View History

from abc import ABC
import torch
class ValidationEpochEndVariations(ABC):
"""
Houses all variations of validation_epoch_end steps
"""
def validation_epoch_end(self, outputs):
"""
Called at the end of validation to aggregate outputs
Args:
outputs: list of individual outputs of each validation step
"""
# if returned a scalar from validation_step, outputs is a list of tensor scalars
# we return just the average in this case (if we want)
def _mean(res, key):
# recursive mean for multilevel dicts
return torch.stack([x[key] if isinstance(x, dict) else _mean(x, key) for x in res]).mean()
# return torch.stack(outputs).mean()
val_loss_mean = _mean(outputs, 'val_loss')
val_acc_mean = _mean(outputs, 'val_acc')
for output in outputs:
val_loss = self.get_output_metric(output, 'val_loss')
# reduce manually when using dp
if self.trainer.use_dp or self.trainer.use_ddp2:
val_loss = torch.mean(val_loss)
val_loss_mean += val_loss
# reduce manually when using dp
val_acc = self.get_output_metric(output, 'val_acc')
if self.trainer.use_dp or self.trainer.use_ddp2:
val_acc = torch.mean(val_acc)
val_acc_mean += val_acc
if outputs: # skip zero divisions
val_loss_mean /= len(outputs)
val_acc_mean /= len(outputs)
metrics_dict = {'val_loss': val_loss_mean.item(), 'val_acc': val_acc_mean.item()}
results = {'progress_bar': metrics_dict, 'log': metrics_dict}
return results