lightning/pl_examples/basic_examples/mnist_datamodule.py

133 lines
4.2 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
from torch.utils.data import DataLoader, random_split
from pl_examples import DATASETS_PATH, TORCHVISION_AVAILABLE
from pytorch_lightning import LightningDataModule
if TORCHVISION_AVAILABLE:
from torchvision import transforms as transform_lib
from torchvision.datasets import MNIST
else:
from tests.base.datasets import MNIST
class MNISTDataModule(LightningDataModule):
"""
Standard MNIST, train, val, test splits and transforms
"""
name = "mnist"
def __init__(
self,
data_dir: str = DATASETS_PATH,
val_split: int = 5000,
num_workers: int = 16,
normalize: bool = False,
seed: int = 42,
batch_size: int = 32,
*args,
**kwargs,
):
"""
Args:
data_dir: where to save/load the data
val_split: how many of the training images to use for the validation split
num_workers: how many workers to use for loading data
normalize: If true applies image normalize
"""
super().__init__(*args, **kwargs)
self.dims = (1, 28, 28)
self.data_dir = data_dir
self.val_split = val_split
self.num_workers = num_workers
self.normalize = normalize
self.seed = seed
self.batch_size = batch_size
self.dataset_train = ...
self.dataset_val = ...
self.test_transforms = self.default_transforms
@property
def num_classes(self):
return 10
def prepare_data(self):
"""Saves MNIST files to `data_dir`"""
MNIST(self.data_dir, train=True, download=True)
MNIST(self.data_dir, train=False, download=True)
def setup(self, stage: Optional[str] = None):
"""Split the train and valid dataset"""
extra = dict(transform=self.default_transforms) if self.default_transforms else {}
dataset = MNIST(self.data_dir, train=True, download=False, **extra)
train_length = len(dataset)
self.dataset_train, self.dataset_val = random_split(dataset, [train_length - self.val_split, self.val_split])
def train_dataloader(self):
"""MNIST train set removes a subset to use for validation"""
loader = DataLoader(
self.dataset_train,
batch_size=self.batch_size,
shuffle=True,
num_workers=self.num_workers,
drop_last=True,
pin_memory=True,
)
return loader
def val_dataloader(self):
"""MNIST val set uses a subset of the training set for validation"""
loader = DataLoader(
self.dataset_val,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers,
drop_last=True,
pin_memory=True,
)
return loader
def test_dataloader(self):
"""MNIST test set uses the test split"""
extra = dict(transform=self.test_transforms) if self.test_transforms else {}
dataset = MNIST(self.data_dir, train=False, download=False, **extra)
loader = DataLoader(
dataset,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers,
drop_last=True,
pin_memory=True,
)
return loader
@property
def default_transforms(self):
if not TORCHVISION_AVAILABLE:
return None
if self.normalize:
mnist_transforms = transform_lib.Compose(
[transform_lib.ToTensor(), transform_lib.Normalize(mean=(0.5,), std=(0.5,))]
)
else:
mnist_transforms = transform_lib.ToTensor()
return mnist_transforms