133 lines
4.2 KiB
Python
133 lines
4.2 KiB
Python
|
# Copyright The PyTorch Lightning team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from typing import Optional
|
||
|
|
||
|
from torch.utils.data import DataLoader, random_split
|
||
|
|
||
|
from pl_examples import DATASETS_PATH, TORCHVISION_AVAILABLE
|
||
|
from pytorch_lightning import LightningDataModule
|
||
|
|
||
|
if TORCHVISION_AVAILABLE:
|
||
|
from torchvision import transforms as transform_lib
|
||
|
from torchvision.datasets import MNIST
|
||
|
else:
|
||
|
from tests.base.datasets import MNIST
|
||
|
|
||
|
|
||
|
class MNISTDataModule(LightningDataModule):
|
||
|
"""
|
||
|
Standard MNIST, train, val, test splits and transforms
|
||
|
"""
|
||
|
|
||
|
name = "mnist"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
data_dir: str = DATASETS_PATH,
|
||
|
val_split: int = 5000,
|
||
|
num_workers: int = 16,
|
||
|
normalize: bool = False,
|
||
|
seed: int = 42,
|
||
|
batch_size: int = 32,
|
||
|
*args,
|
||
|
**kwargs,
|
||
|
):
|
||
|
"""
|
||
|
Args:
|
||
|
data_dir: where to save/load the data
|
||
|
val_split: how many of the training images to use for the validation split
|
||
|
num_workers: how many workers to use for loading data
|
||
|
normalize: If true applies image normalize
|
||
|
"""
|
||
|
super().__init__(*args, **kwargs)
|
||
|
|
||
|
self.dims = (1, 28, 28)
|
||
|
self.data_dir = data_dir
|
||
|
self.val_split = val_split
|
||
|
self.num_workers = num_workers
|
||
|
self.normalize = normalize
|
||
|
self.seed = seed
|
||
|
self.batch_size = batch_size
|
||
|
self.dataset_train = ...
|
||
|
self.dataset_val = ...
|
||
|
self.test_transforms = self.default_transforms
|
||
|
|
||
|
@property
|
||
|
def num_classes(self):
|
||
|
return 10
|
||
|
|
||
|
def prepare_data(self):
|
||
|
"""Saves MNIST files to `data_dir`"""
|
||
|
MNIST(self.data_dir, train=True, download=True)
|
||
|
MNIST(self.data_dir, train=False, download=True)
|
||
|
|
||
|
def setup(self, stage: Optional[str] = None):
|
||
|
"""Split the train and valid dataset"""
|
||
|
extra = dict(transform=self.default_transforms) if self.default_transforms else {}
|
||
|
dataset = MNIST(self.data_dir, train=True, download=False, **extra)
|
||
|
train_length = len(dataset)
|
||
|
self.dataset_train, self.dataset_val = random_split(dataset, [train_length - self.val_split, self.val_split])
|
||
|
|
||
|
def train_dataloader(self):
|
||
|
"""MNIST train set removes a subset to use for validation"""
|
||
|
loader = DataLoader(
|
||
|
self.dataset_train,
|
||
|
batch_size=self.batch_size,
|
||
|
shuffle=True,
|
||
|
num_workers=self.num_workers,
|
||
|
drop_last=True,
|
||
|
pin_memory=True,
|
||
|
)
|
||
|
return loader
|
||
|
|
||
|
def val_dataloader(self):
|
||
|
"""MNIST val set uses a subset of the training set for validation"""
|
||
|
loader = DataLoader(
|
||
|
self.dataset_val,
|
||
|
batch_size=self.batch_size,
|
||
|
shuffle=False,
|
||
|
num_workers=self.num_workers,
|
||
|
drop_last=True,
|
||
|
pin_memory=True,
|
||
|
)
|
||
|
return loader
|
||
|
|
||
|
def test_dataloader(self):
|
||
|
"""MNIST test set uses the test split"""
|
||
|
extra = dict(transform=self.test_transforms) if self.test_transforms else {}
|
||
|
dataset = MNIST(self.data_dir, train=False, download=False, **extra)
|
||
|
loader = DataLoader(
|
||
|
dataset,
|
||
|
batch_size=self.batch_size,
|
||
|
shuffle=False,
|
||
|
num_workers=self.num_workers,
|
||
|
drop_last=True,
|
||
|
pin_memory=True,
|
||
|
)
|
||
|
return loader
|
||
|
|
||
|
@property
|
||
|
def default_transforms(self):
|
||
|
if not TORCHVISION_AVAILABLE:
|
||
|
return None
|
||
|
if self.normalize:
|
||
|
mnist_transforms = transform_lib.Compose(
|
||
|
[transform_lib.ToTensor(), transform_lib.Normalize(mean=(0.5,), std=(0.5,))]
|
||
|
)
|
||
|
else:
|
||
|
mnist_transforms = transform_lib.ToTensor()
|
||
|
|
||
|
return mnist_transforms
|