2020-09-28 23:09:04 +00:00
|
|
|
import math
|
2020-09-30 12:33:01 +00:00
|
|
|
from enum import Enum
|
2020-08-24 11:02:06 +00:00
|
|
|
from typing import Any
|
2020-09-28 23:09:04 +00:00
|
|
|
|
|
|
|
import torch
|
|
|
|
|
2020-09-05 12:55:22 +00:00
|
|
|
from pytorch_lightning.utilities import AMPType, rank_zero_warn
|
2020-09-28 23:09:04 +00:00
|
|
|
from pytorch_lightning.utilities.apply_func import move_data_to_device
|
2020-09-05 21:01:46 +00:00
|
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
2020-10-01 05:21:38 +00:00
|
|
|
from pytorch_lightning.utilities.parsing import AttributeDict
|
2020-09-05 22:27:28 +00:00
|
|
|
|
|
|
|
try:
|
|
|
|
from apex import amp
|
|
|
|
except ImportError:
|
|
|
|
amp = None
|
|
|
|
|
|
|
|
EPSILON = 1e-6
|
|
|
|
EPSILON_FP16 = 1e-5
|
2020-08-24 11:02:06 +00:00
|
|
|
|
|
|
|
|
|
|
|
class Accelerator(object):
|
|
|
|
|
|
|
|
def __init__(self, trainer):
|
|
|
|
self.trainer = trainer
|
2020-10-01 05:21:38 +00:00
|
|
|
self.dist = AttributeDict(rank=0, device=None)
|
2020-08-24 11:02:06 +00:00
|
|
|
|
2020-08-26 23:10:24 +00:00
|
|
|
def setup(self, model):
|
2020-08-26 22:43:28 +00:00
|
|
|
pass
|
|
|
|
|
2020-08-26 18:20:38 +00:00
|
|
|
def teardown(self):
|
|
|
|
pass
|
|
|
|
|
2020-09-11 01:58:47 +00:00
|
|
|
def barrier(self, name: str = None):
|
|
|
|
pass
|
|
|
|
|
2020-10-01 05:21:38 +00:00
|
|
|
def broadcast(self, obj, src=0):
|
|
|
|
return obj
|
|
|
|
|
2020-09-11 01:58:47 +00:00
|
|
|
def train_or_test(self):
|
|
|
|
if self.trainer.testing:
|
|
|
|
results = self.trainer.run_test()
|
|
|
|
else:
|
|
|
|
results = self.trainer.train()
|
|
|
|
return results
|
|
|
|
|
2020-08-24 11:02:06 +00:00
|
|
|
def batch_to_device(self, batch: Any, device: torch.device):
|
|
|
|
model = self.trainer.get_model()
|
|
|
|
if model is not None:
|
|
|
|
return model.transfer_batch_to_device(batch, device)
|
|
|
|
return move_data_to_device(batch, device)
|
2020-08-24 21:50:47 +00:00
|
|
|
|
|
|
|
def training_step_end(self, output):
|
|
|
|
return output
|
|
|
|
|
|
|
|
def test_step_end(self, output):
|
|
|
|
return output
|
|
|
|
|
|
|
|
def validation_step_end(self, output):
|
|
|
|
return output
|
2020-08-25 01:53:56 +00:00
|
|
|
|
|
|
|
def process_dataloader(self, dataloader):
|
|
|
|
return dataloader
|
2020-09-05 12:55:22 +00:00
|
|
|
|
|
|
|
def backward(self, closure_loss, optimizer, opt_idx):
|
|
|
|
model_ref = self.trainer.get_model()
|
|
|
|
|
|
|
|
# scale loss for 16 bit
|
|
|
|
if self.trainer.precision == 16:
|
|
|
|
closure_loss = model_ref.amp_scale_loss(
|
|
|
|
closure_loss,
|
|
|
|
optimizer,
|
|
|
|
opt_idx,
|
|
|
|
amp_backend=self.trainer.amp_backend
|
|
|
|
)
|
|
|
|
|
|
|
|
# enter amp context
|
|
|
|
if self.trainer.amp_backend == AMPType.APEX:
|
|
|
|
self.trainer.dev_debugger.track_event('AMP', str(AMPType.APEX))
|
|
|
|
context = closure_loss
|
|
|
|
closure_loss = closure_loss.__enter__()
|
|
|
|
|
|
|
|
# do backward pass
|
|
|
|
model_ref.backward(self, closure_loss, optimizer, opt_idx)
|
|
|
|
|
|
|
|
# exit amp context
|
|
|
|
if self.trainer.precision == 16 and self.trainer.amp_backend == AMPType.APEX:
|
|
|
|
a, b, c = None, None, None
|
|
|
|
error = context.__exit__(a, b, c)
|
|
|
|
if error:
|
|
|
|
rank_zero_warn(a, b, c)
|
|
|
|
raise Exception('apex unscale error')
|
|
|
|
|
|
|
|
# once backward has been applied, release graph
|
|
|
|
closure_loss = closure_loss.detach()
|
|
|
|
return closure_loss
|
2020-09-05 21:01:46 +00:00
|
|
|
|
|
|
|
def optimizer_step(self, optimizer, batch_idx, opt_idx, lambda_closure):
|
|
|
|
model_ref = self.trainer.get_model()
|
|
|
|
is_lbfgs = isinstance(optimizer, torch.optim.LBFGS)
|
|
|
|
native_amp = self.trainer.amp_backend == AMPType.NATIVE
|
|
|
|
|
|
|
|
# native amp + lbfgs is a no go right now
|
|
|
|
if native_amp and is_lbfgs:
|
|
|
|
raise MisconfigurationException(
|
|
|
|
'native PyTorch amp and lbfgs are not compatible.'
|
|
|
|
' To request, please file a Github issue in PyTorch and tag @mcarilli')
|
|
|
|
|
|
|
|
# model hook
|
|
|
|
model_ref.optimizer_step(
|
|
|
|
self.trainer.current_epoch,
|
|
|
|
batch_idx,
|
|
|
|
optimizer,
|
|
|
|
opt_idx,
|
|
|
|
lambda_closure,
|
|
|
|
using_native_amp=native_amp,
|
|
|
|
using_lbfgs=is_lbfgs
|
|
|
|
)
|
|
|
|
|
|
|
|
# scale when native amp
|
|
|
|
if native_amp:
|
|
|
|
self.trainer.scaler.update()
|
|
|
|
|
|
|
|
def optimizer_zero_grad(self, batch_idx, optimizer, opt_idx):
|
|
|
|
model_ref = self.trainer.get_model()
|
|
|
|
model_ref.optimizer_zero_grad(self.trainer.current_epoch, batch_idx, optimizer, opt_idx)
|
2020-09-05 22:27:28 +00:00
|
|
|
|
|
|
|
def clip_gradients(self, optimizer):
|
|
|
|
|
|
|
|
if self.trainer.amp_backend == AMPType.NATIVE:
|
|
|
|
self.trainer.scaler.unscale_(optimizer)
|
|
|
|
|
|
|
|
# apply clip gradients
|
|
|
|
# TODO: separate TPU case from here
|
|
|
|
self._clip_gradients(optimizer)
|
|
|
|
|
|
|
|
def _clip_gradients(self, optimizer):
|
|
|
|
# this code is a modification of torch.nn.utils.clip_grad_norm_
|
|
|
|
# with TPU support based on https://github.com/pytorch/xla/blob/master/TROUBLESHOOTING.md
|
|
|
|
if self.trainer.gradient_clip_val <= 0:
|
|
|
|
return
|
|
|
|
|
|
|
|
model = self.trainer.get_model()
|
|
|
|
if self.trainer.amp_backend == AMPType.APEX:
|
|
|
|
parameters = amp.master_params(optimizer)
|
|
|
|
else:
|
|
|
|
parameters = model.parameters()
|
|
|
|
|
|
|
|
max_norm = float(self.trainer.gradient_clip_val)
|
|
|
|
norm_type = float(2.0)
|
|
|
|
|
|
|
|
if isinstance(parameters, torch.Tensor):
|
|
|
|
parameters = [parameters]
|
|
|
|
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
|
|
|
|
|
|
|
if norm_type == math.inf:
|
|
|
|
total_norm = max(p.grad.data.abs().max() for p in parameters)
|
|
|
|
else:
|
|
|
|
device = parameters[0].device
|
|
|
|
out = torch.empty(len(parameters), device=device)
|
|
|
|
for i, p in enumerate(parameters):
|
|
|
|
torch.norm(p.grad.data.to(device), norm_type, out=out[i])
|
|
|
|
total_norm = torch.norm(out, norm_type)
|
|
|
|
|
|
|
|
eps = EPSILON_FP16 if self.trainer.precision == 16 else EPSILON
|
|
|
|
clip_coef = torch.tensor(max_norm, device=device) / (total_norm + eps)
|
|
|
|
clip_coef = torch.min(clip_coef, torch.ones_like(clip_coef))
|
|
|
|
for p in parameters:
|
|
|
|
p.grad.data.mul_(clip_coef.to(p.grad.data.device))
|
2020-09-06 21:50:47 +00:00
|
|
|
|
|
|
|
def on_train_epoch_end(self):
|
|
|
|
pass
|
2020-09-11 14:56:21 +00:00
|
|
|
|
2020-10-01 12:15:23 +00:00
|
|
|
def on_train_end(self):
|
|
|
|
pass
|
|
|
|
|
2020-09-11 14:56:21 +00:00
|
|
|
def early_stopping_should_stop(self, pl_module):
|
|
|
|
return self.trainer.should_stop
|
2020-09-28 23:09:04 +00:00
|
|
|
|
|
|
|
def setup_optimizers(self, model):
|
|
|
|
if self.trainer.testing is True:
|
|
|
|
return
|
|
|
|
|
|
|
|
optimizers, lr_schedulers, optimizer_frequencies = self.trainer.init_optimizers(model)
|
|
|
|
self.trainer.optimizers = optimizers
|
|
|
|
self.trainer.lr_schedulers = lr_schedulers
|
|
|
|
self.trainer.optimizer_frequencies = optimizer_frequencies
|
2020-09-30 12:33:01 +00:00
|
|
|
|
|
|
|
|
|
|
|
class BackendType(Enum):
|
|
|
|
DP = 'dp'
|
|
|
|
DDP = 'ddp'
|
|
|
|
DDP2 = 'ddp2'
|
|
|
|
DDP_SPAWN = 'ddp_spawn'
|
|
|
|
DDP_CPU = 'ddp_cpu'
|
|
|
|
TPU = 'tpu'
|
|
|
|
HOROVOD = 'horovod'
|