add dist lib to enable syncing anything across devices (#3762)

* add dist lib to enable syncing anything across devices
This commit is contained in:
William Falcon 2020-10-01 01:21:38 -04:00 committed by GitHub
parent cf182e80fc
commit a38d108a68
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
14 changed files with 71 additions and 5 deletions

View File

@ -141,3 +141,4 @@ Indices and tables
api/pytorch_lightning.utilities
api/pytorch_lightning.tuner
api/pytorch_lightning.plugins
api/pytorch_lightning.distributed

View File

@ -7,6 +7,7 @@ import torch
from pytorch_lightning.utilities import AMPType, rank_zero_warn
from pytorch_lightning.utilities.apply_func import move_data_to_device
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.parsing import AttributeDict
try:
from apex import amp
@ -21,6 +22,7 @@ class Accelerator(object):
def __init__(self, trainer):
self.trainer = trainer
self.dist = AttributeDict(rank=0, device=None)
def setup(self, model):
pass
@ -31,6 +33,9 @@ class Accelerator(object):
def barrier(self, name: str = None):
pass
def broadcast(self, obj, src=0):
return obj
def train_or_test(self):
if self.trainer.testing:
results = self.trainer.run_test()

View File

@ -24,6 +24,7 @@ from pytorch_lightning.utilities import AMPType
from pytorch_lightning.utilities.cloud_io import atomic_save
from pytorch_lightning.utilities.distributed import rank_zero_only, rank_zero_warn
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.distributed.dist import LightningDistributed
try:
from hydra.core.hydra_config import HydraConfig
@ -38,6 +39,7 @@ class DDPBase(Accelerator):
def __init__(self, trainer):
super().__init__(trainer)
self.dist = LightningDistributed()
def training_step(self, args):
if self.trainer.amp_backend == AMPType.NATIVE:
@ -177,6 +179,9 @@ class DDPBase(Accelerator):
if self.trainer.global_rank == 0:
return results
def broadcast(self, obj, src=0):
return self.dist.broadcast(obj)
def set_world_ranks(self, process_idx):
raise NotImplementedError('to create a ddp backend, please implement set_world_ranks')

View File

@ -25,6 +25,7 @@ from pytorch_lightning.utilities import AMPType
from pytorch_lightning.utilities.cloud_io import atomic_save
from pytorch_lightning.utilities.distributed import rank_zero_only, rank_zero_warn
from pytorch_lightning.utilities.distributed import find_free_network_port
from pytorch_lightning.distributed.dist import LightningDistributed
try:
from hydra.core.hydra_config import HydraConfig
@ -41,6 +42,7 @@ class DDPCPUSpawnBackend(Accelerator):
super().__init__(trainer)
self.mp_queue = None
self.nprocs = nprocs
self.dist = LightningDistributed()
def setup(self, model):
os.environ['MASTER_PORT'] = os.environ.get('MASTER_PORT', str(find_free_network_port()))
@ -174,6 +176,9 @@ class DDPCPUSpawnBackend(Accelerator):
def barrier(self, name: str = None):
torch_distrib.barrier()
def broadcast(self, obj, src=0):
return self.dist.broadcast(obj)
def early_stopping_should_stop(self, pl_module):
stop = torch.tensor(int(self.trainer.should_stop), device=pl_module.device)
dist.all_reduce(stop, op=dist.reduce_op.SUM)

View File

@ -16,7 +16,7 @@ import torch
from torch import optim
from pytorch_lightning.accelerators.base_backend import Accelerator
from pytorch_lightning.core import LightningModule
from pytorch_lightning.distributed import LightningDistributed
from pytorch_lightning.core.step_result import Result
from pytorch_lightning.overrides.data_parallel import LightningDataParallel
from pytorch_lightning.utilities import AMPType
@ -28,6 +28,7 @@ class DataParallelBackend(Accelerator):
def __init__(self, trainer):
super().__init__(trainer)
self.model_autocast_original_forward = None
self.dist = LightningDistributed()
def setup(self, model):
# call setup after the ddp process has connected

View File

@ -16,6 +16,7 @@ import torch
from pytorch_lightning.accelerators.base_backend import Accelerator
from pytorch_lightning.utilities import AMPType
from pytorch_lightning.distributed.dist import LightningDistributed
class GPUBackend(Accelerator):
@ -23,6 +24,7 @@ class GPUBackend(Accelerator):
def __init__(self, trainer):
super().__init__(trainer)
self.dist = LightningDistributed()
def setup(self, model):

View File

@ -158,3 +158,7 @@ class HorovodBackend(Accelerator):
def barrier(self, name: str = None):
hvd.join()
def broadcast(self, obj, src=0):
obj = hvd.broadcast_object(obj, src)
return obj

View File

@ -366,7 +366,6 @@ class ModelCheckpoint(Callback):
ckpt_name = f"{filename}.ckpt"
return os.path.join(self.dirpath, ckpt_name) if self.dirpath else ckpt_name
@rank_zero_only
def __resolve_ckpt_dir(self, trainer, pl_module):
"""
Determines model checkpoint save directory at runtime. References attributes from the
@ -398,8 +397,11 @@ class ModelCheckpoint(Callback):
if isinstance(trainer.logger.version, str)
else f"version_{trainer.logger.version}"
)
version, name = trainer.accelerator_backend.broadcast((version, trainer.logger.name))
ckpt_path = os.path.join(
save_dir, trainer.logger.name, version, "checkpoints"
save_dir, name, version, "checkpoints"
)
else:
ckpt_path = os.path.join(trainer.weights_save_path, "checkpoints")

View File

@ -0,0 +1 @@
from pytorch_lightning.distributed.dist import LightningDistributed

View File

@ -0,0 +1,36 @@
import io
import torch
from typing import Any
from torch import distributed as torch_distrib
class LightningDistributed:
def __init__(self, rank=None, device=None):
self.rank = rank
self.device = device
def broadcast(self, obj: Any):
if self.rank == 0:
self._emit(obj)
else:
obj = self._receive()
return obj
def _emit(self, obj):
buffer = io.BytesIO()
torch.save(obj, buffer)
data = bytearray(buffer.getbuffer())
length_tensor = torch.tensor([len(data)]).long().to(self.device)
length_tensor = torch_distrib.broadcast(length_tensor, src=0)
data_tensor = torch.ByteTensor(data).to(self.device)
data_tensor = torch_distrib.broadcast(data_tensor, src=0)
def _receive(self):
length_tensor = torch.tensor([0]).long().to(self.device)
torch_distrib.broadcast(length_tensor, src=0)
data_tensor = torch.empty([length_tensor.item()], dtype=torch.uint8).to(self.device)
torch_distrib.broadcast(data_tensor, src=0)
buffer = io.BytesIO(data_tensor.cpu().numpy())
obj = torch.load(buffer)
return obj

View File

@ -69,7 +69,7 @@ class TrainerLoggingMixin(ABC):
m = inspect.cleandoc(
f"""The {{{k}:dict keyword}} was deprecated in 0.9.1 and will be removed in 1.0.0
Please use self.log(...) inside the lightningModule instead.
# log on a step or aggregate epoch metric to the logger and/or progress bar
# (inside LightningModule)
self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True)

View File

@ -108,6 +108,9 @@ class TrainLoop:
if self.trainer.data_parallel:
ref_model = model.module
self.trainer.accelerator_backend.dist.rank = self.trainer.global_rank
self.trainer.accelerator_backend.dist.device = ref_model.device
# give model convenience properties
ref_model.trainer = self.trainer

View File

@ -437,7 +437,7 @@ def test_model_checkpoint_save_last_checkpoint_contents(tmpdir):
trainer.fit(model)
path_last_epoch = str(tmpdir / f"epoch={num_epochs - 1}.ckpt")
path_last = str(tmpdir / f"last.ckpt")
path_last = str(tmpdir / "last.ckpt")
assert path_last == model_checkpoint.last_model_path
ckpt_last_epoch = torch.load(path_last_epoch)

View File

@ -235,6 +235,7 @@ def test_dm_checkpoint_save(tmpdir):
assert dm.__class__.__name__ in checkpoint
assert checkpoint[dm.__class__.__name__] == dm.__class__.__name__
def test_test_loop_only(tmpdir):
reset_seed()