lightning/examples/app_hpo/objective.py

64 lines
2.1 KiB
Python
Raw Normal View History

import os
import tempfile
from datetime import datetime
from typing import Optional
import pandas as pd
import torch
from optuna.distributions import CategoricalDistribution, LogUniformDistribution
from torchmetrics import Accuracy
import lightning as L
from lightning.app.components import TracerPythonScript
class ObjectiveWork(TracerPythonScript):
def __init__(self, script_path: str, data_dir: str, cloud_compute: Optional[L.CloudCompute]):
timestamp = datetime.now().strftime("%H:%M:%S")
tmpdir = tempfile.TemporaryDirectory().name
submission_path = os.path.join(tmpdir, f"{timestamp}.csv")
best_model_path = os.path.join(tmpdir, f"{timestamp}.model.pt")
super().__init__(
script_path,
script_args=[
f"--train_data_path={data_dir}/train",
f"--test_data_path={data_dir}/test",
f"--submission_path={submission_path}",
f"--best_model_path={best_model_path}",
],
cloud_compute=cloud_compute,
)
self.data_dir = data_dir
self.best_model_path = best_model_path
self.submission_path = submission_path
self.metric = None
self.trial_id = None
self.metric = None
self.params = None
self.has_told_study = False
def run(self, trial_id: int, **params):
self.trial_id = trial_id
self.params = params
self.script_args.extend([f"--{k}={v}" for k, v in params.items()])
super().run()
self.compute_metric()
def _to_labels(self, path: str):
return torch.from_numpy(pd.read_csv(path).label.values)
def compute_metric(self):
self.metric = -1 * float(
Accuracy()(
self._to_labels(self.submission_path),
self._to_labels(f"{self.data_dir}/ground_truth.csv"),
)
)
@staticmethod
def distributions():
return {
"backbone": CategoricalDistribution(["resnet18", "resnet34"]),
"learning_rate": LogUniformDistribution(0.0001, 0.1),
}