2020-11-19 12:36:23 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
2020-11-19 13:10:51 +00:00
|
|
|
import sys
|
2020-11-19 12:36:23 +00:00
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from pytorch_lightning import Trainer
|
2020-11-20 19:20:37 +00:00
|
|
|
from tests.backends.launcher import DDPLauncher
|
2020-11-19 12:36:23 +00:00
|
|
|
from tests.base.boring_model import BoringModel
|
|
|
|
|
|
|
|
|
2020-11-19 12:37:41 +00:00
|
|
|
class TrainerGetModel(BoringModel):
|
2020-11-19 12:36:23 +00:00
|
|
|
def on_fit_start(self):
|
|
|
|
assert self == self.trainer.get_model()
|
|
|
|
|
|
|
|
def on_fit_end(self):
|
|
|
|
assert self == self.trainer.get_model()
|
|
|
|
|
|
|
|
|
|
|
|
def test_get_model(tmpdir):
|
|
|
|
"""
|
2020-11-19 13:10:51 +00:00
|
|
|
Tests that :meth:`trainer.get_model` extracts the model correctly
|
2020-11-19 12:36:23 +00:00
|
|
|
"""
|
|
|
|
|
2020-11-19 12:37:41 +00:00
|
|
|
model = TrainerGetModel()
|
2020-11-19 12:36:23 +00:00
|
|
|
|
|
|
|
limit_train_batches = 2
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
limit_train_batches=limit_train_batches,
|
|
|
|
limit_val_batches=2,
|
|
|
|
max_epochs=1,
|
|
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
|
2020-11-19 13:42:27 +00:00
|
|
|
@pytest.mark.skipif(sys.platform == "win32", reason="DDP not available on windows")
|
2020-11-19 12:36:23 +00:00
|
|
|
def test_get_model_ddp_cpu(tmpdir):
|
|
|
|
"""
|
2020-11-19 13:10:51 +00:00
|
|
|
Tests that :meth:`trainer.get_model` extracts the model correctly when using ddp on cpu
|
2020-11-19 12:36:23 +00:00
|
|
|
"""
|
|
|
|
|
2020-11-19 12:37:41 +00:00
|
|
|
model = TrainerGetModel()
|
2020-11-19 12:36:23 +00:00
|
|
|
|
|
|
|
limit_train_batches = 2
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
limit_train_batches=limit_train_batches,
|
|
|
|
limit_val_batches=2,
|
|
|
|
max_epochs=1,
|
|
|
|
accelerator='ddp_cpu',
|
|
|
|
num_processes=2
|
|
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
|
2020-11-19 13:10:51 +00:00
|
|
|
def test_get_model_gpu(tmpdir):
|
2020-11-19 12:36:23 +00:00
|
|
|
"""
|
2020-11-19 13:10:51 +00:00
|
|
|
Tests that :meth:`trainer.get_model` extracts the model correctly when using GPU
|
|
|
|
"""
|
|
|
|
|
|
|
|
model = TrainerGetModel()
|
|
|
|
|
|
|
|
limit_train_batches = 2
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
limit_train_batches=limit_train_batches,
|
|
|
|
limit_val_batches=2,
|
|
|
|
max_epochs=1,
|
|
|
|
gpus=1
|
|
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
|
|
|
|
@pytest.mark.skipif(sys.platform == "win32", reason="DDP not available on windows")
|
2020-11-20 19:20:37 +00:00
|
|
|
@DDPLauncher.run("--accelerator [accelerator]",
|
|
|
|
max_epochs=["1"],
|
|
|
|
accelerator=["ddp", "ddp_spawn"])
|
|
|
|
def test_get_model_ddp_gpu(tmpdir, args=None):
|
2020-11-19 13:10:51 +00:00
|
|
|
"""
|
|
|
|
Tests that :meth:`trainer.get_model` extracts the model correctly when using GPU + ddp accelerators
|
2020-11-19 12:36:23 +00:00
|
|
|
"""
|
|
|
|
|
2020-11-19 12:37:41 +00:00
|
|
|
model = TrainerGetModel()
|
2020-11-19 12:36:23 +00:00
|
|
|
|
|
|
|
limit_train_batches = 2
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
limit_train_batches=limit_train_batches,
|
|
|
|
limit_val_batches=2,
|
|
|
|
max_epochs=1,
|
|
|
|
gpus=1,
|
2020-11-20 19:20:37 +00:00
|
|
|
accelerator=args.accelerator
|
2020-11-19 12:36:23 +00:00
|
|
|
)
|
|
|
|
trainer.fit(model)
|
2020-11-20 19:20:37 +00:00
|
|
|
return 1
|