# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import pytest import torch from pytorch_lightning import Trainer from tests.backends.launcher import DDPLauncher from tests.base.boring_model import BoringModel class TrainerGetModel(BoringModel): def on_fit_start(self): assert self == self.trainer.get_model() def on_fit_end(self): assert self == self.trainer.get_model() def test_get_model(tmpdir): """ Tests that :meth:`trainer.get_model` extracts the model correctly """ model = TrainerGetModel() limit_train_batches = 2 trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=limit_train_batches, limit_val_batches=2, max_epochs=1, ) trainer.fit(model) @pytest.mark.skipif(sys.platform == "win32", reason="DDP not available on windows") def test_get_model_ddp_cpu(tmpdir): """ Tests that :meth:`trainer.get_model` extracts the model correctly when using ddp on cpu """ model = TrainerGetModel() limit_train_batches = 2 trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=limit_train_batches, limit_val_batches=2, max_epochs=1, accelerator='ddp_cpu', num_processes=2 ) trainer.fit(model) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") def test_get_model_gpu(tmpdir): """ Tests that :meth:`trainer.get_model` extracts the model correctly when using GPU """ model = TrainerGetModel() limit_train_batches = 2 trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=limit_train_batches, limit_val_batches=2, max_epochs=1, gpus=1 ) trainer.fit(model) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") @pytest.mark.skipif(sys.platform == "win32", reason="DDP not available on windows") @DDPLauncher.run("--accelerator [accelerator]", max_epochs=["1"], accelerator=["ddp", "ddp_spawn"]) def test_get_model_ddp_gpu(tmpdir, args=None): """ Tests that :meth:`trainer.get_model` extracts the model correctly when using GPU + ddp accelerators """ model = TrainerGetModel() limit_train_batches = 2 trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=limit_train_batches, limit_val_batches=2, max_epochs=1, gpus=1, accelerator=args.accelerator ) trainer.fit(model) return 1