lightning/pytorch_lightning/trainer_main.py

211 lines
6.1 KiB
Python
Raw Normal View History

2019-03-31 01:45:16 +00:00
import os
import sys
import torch
import numpy as np
from test_tube import HyperOptArgumentParser, Experiment, SlurmCluster
from pytorch_lightning.models.trainer import Trainer
from pytorch_lightning.utils.arg_parse import add_default_args
from time import sleep
2019-06-27 15:03:53 +00:00
from pytorch_lightning.callbacks.pt_callbacks import EarlyStopping, ModelCheckpoint
2019-03-31 01:45:16 +00:00
SEED = 2334
torch.manual_seed(SEED)
np.random.seed(SEED)
# ---------------------
# DEFINE MODEL HERE
# ---------------------
from pytorch_lightning.models.sample_model_template.model_template import ExampleModel1
# ---------------------
AVAILABLE_MODELS = {
'model_1': ExampleModel1
}
"""
Allows training by using command line arguments
Run by:
# TYPE YOUR RUN COMMAND HERE
"""
def main_local(hparams):
main(hparams, None, None)
def main(hparams, cluster, results_dict):
"""
Main training routine specific for this project
:param hparams:
:return:
"""
on_gpu = torch.cuda.is_available()
if hparams.disable_cuda:
on_gpu = False
device = 'cuda' if on_gpu else 'cpu'
hparams.__setattr__('device', device)
hparams.__setattr__('on_gpu', on_gpu)
hparams.__setattr__('nb_gpus', torch.cuda.device_count())
hparams.__setattr__('inference_mode', hparams.model_load_weights_path is not None)
# init experiment
exp = Experiment(
name=hparams.tt_name,
debug=hparams.debug,
save_dir=hparams.tt_save_path,
version=hparams.hpc_exp_number,
autosave=False,
description=hparams.tt_description
)
exp.argparse(hparams)
exp.save()
# build model
print('loading model...')
model = TRAINING_MODEL(hparams)
print('model built')
# callbacks
early_stop = EarlyStopping(
monitor=hparams.early_stop_metric,
patience=hparams.early_stop_patience,
verbose=True,
mode=hparams.early_stop_mode
)
model_save_path = '{}/{}/{}'.format(hparams.model_save_path, exp.name, exp.version)
checkpoint = ModelCheckpoint(
filepath=model_save_path,
save_function=None,
save_best_only=True,
verbose=True,
monitor=hparams.model_save_monitor_value,
mode=hparams.model_save_monitor_mode
)
# configure trainer
trainer = Trainer(
experiment=exp,
on_gpu=on_gpu,
cluster=cluster,
2019-06-27 15:22:13 +00:00
progress_bar=hparams.enable_tqdm,
2019-03-31 01:45:16 +00:00
overfit_pct=hparams.overfit,
track_grad_norm=hparams.track_grad_norm,
fast_dev_run=hparams.fast_dev_run,
check_val_every_n_epoch=hparams.check_val_every_n_epoch,
accumulate_grad_batches=hparams.accumulate_grad_batches,
process_position=process_position,
current_gpu_name=current_gpu,
checkpoint_callback=checkpoint,
early_stop_callback=early_stop,
enable_early_stop=hparams.enable_early_stop,
max_nb_epochs=hparams.max_nb_epochs,
min_nb_epochs=hparams.min_nb_epochs,
train_percent_check=hparams.train_percent_check,
val_percent_check=hparams.val_percent_check,
test_percent_check=hparams.test_percent_check,
val_check_interval=hparams.val_check_interval,
log_save_interval=hparams.log_save_interval,
add_log_row_interval=hparams.add_log_row_interval,
lr_scheduler_milestones=hparams.lr_scheduler_milestones
)
# train model
trainer.fit(model)
def get_default_parser(strategy, root_dir):
possible_model_names = list(AVAILABLE_MODELS.keys())
parser = HyperOptArgumentParser(strategy=strategy, add_help=False)
add_default_args(parser, root_dir, possible_model_names, SEED)
return parser
def get_model_name(args):
for i, arg in enumerate(args):
if 'model_name' in arg:
return args[i+1]
def optimize_on_cluster(hyperparams):
# enable cluster training
cluster = SlurmCluster(
hyperparam_optimizer=hyperparams,
log_path=hyperparams.tt_save_path,
test_tube_exp_name=hyperparams.tt_name
)
# email for cluster coms
cluster.notify_job_status(email='add_email_here', on_done=True, on_fail=True)
# configure cluster
cluster.per_experiment_nb_gpus = hyperparams.per_experiment_nb_gpus
cluster.job_time = '48:00:00'
cluster.gpu_type = '1080ti'
cluster.memory_mb_per_node = 48000
# any modules for code to run in env
cluster.add_command('source activate pytorch_lightning')
# name of exp
job_display_name = hyperparams.tt_name.split('_')[0]
job_display_name = job_display_name[0:3]
# run hopt
print('submitting jobs...')
cluster.optimize_parallel_cluster_gpu(
main,
nb_trials=hyperparams.nb_hopt_trials,
job_name=job_display_name
)
if __name__ == '__main__':
model_name = get_model_name(sys.argv)
# use default args
root_dir = os.path.split(os.path.dirname(sys.modules['__main__'].__file__))[0]
parent_parser = get_default_parser(strategy='random_search', root_dir=root_dir)
# allow model to overwrite or extend args
TRAINING_MODEL = AVAILABLE_MODELS[model_name]
parser = TRAINING_MODEL.add_model_specific_args(parent_parser)
parser.json_config('-c', '--config', default=root_dir + '/run_configs/local.json')
hyperparams = parser.parse_args()
# format GPU layout
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
gpu_ids = hyperparams.gpus.split(';')
# RUN TRAINING
if hyperparams.on_cluster:
print('RUNNING ON SLURM CLUSTER')
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(gpu_ids)
optimize_on_cluster(hyperparams)
elif hyperparams.single_run_gpu:
print(f'RUNNING 1 TRIAL ON GPU. gpu: {gpu_ids[0]}')
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_ids[0]
main(hyperparams, None, None)
elif hyperparams.local or hyperparams.single_run:
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
print('RUNNING LOCALLY')
main(hyperparams, None, None)
else:
print(f'RUNNING MULTI GPU. GPU ids: {gpu_ids}')
hyperparams.optimize_parallel_gpu(
main_local,
gpu_ids=gpu_ids,
nb_trials=hyperparams.nb_hopt_trials,
nb_workers=len(gpu_ids)
)