import os import sys import torch import numpy as np from test_tube import HyperOptArgumentParser, Experiment, SlurmCluster from pytorch_lightning.models.trainer import Trainer from pytorch_lightning.utils.arg_parse import add_default_args from time import sleep from pytorch_lightning.callbacks.pt_callbacks import EarlyStopping, ModelCheckpoint SEED = 2334 torch.manual_seed(SEED) np.random.seed(SEED) # --------------------- # DEFINE MODEL HERE # --------------------- from pytorch_lightning.models.sample_model_template.model_template import ExampleModel1 # --------------------- AVAILABLE_MODELS = { 'model_1': ExampleModel1 } """ Allows training by using command line arguments Run by: # TYPE YOUR RUN COMMAND HERE """ def main_local(hparams): main(hparams, None, None) def main(hparams, cluster, results_dict): """ Main training routine specific for this project :param hparams: :return: """ on_gpu = torch.cuda.is_available() if hparams.disable_cuda: on_gpu = False device = 'cuda' if on_gpu else 'cpu' hparams.__setattr__('device', device) hparams.__setattr__('on_gpu', on_gpu) hparams.__setattr__('nb_gpus', torch.cuda.device_count()) hparams.__setattr__('inference_mode', hparams.model_load_weights_path is not None) # init experiment exp = Experiment( name=hparams.tt_name, debug=hparams.debug, save_dir=hparams.tt_save_path, version=hparams.hpc_exp_number, autosave=False, description=hparams.tt_description ) exp.argparse(hparams) exp.save() # build model print('loading model...') model = TRAINING_MODEL(hparams) print('model built') # callbacks early_stop = EarlyStopping( monitor=hparams.early_stop_metric, patience=hparams.early_stop_patience, verbose=True, mode=hparams.early_stop_mode ) model_save_path = '{}/{}/{}'.format(hparams.model_save_path, exp.name, exp.version) checkpoint = ModelCheckpoint( filepath=model_save_path, save_function=None, save_best_only=True, verbose=True, monitor=hparams.model_save_monitor_value, mode=hparams.model_save_monitor_mode ) # configure trainer trainer = Trainer( experiment=exp, on_gpu=on_gpu, cluster=cluster, progress_bar=hparams.enable_tqdm, overfit_pct=hparams.overfit, track_grad_norm=hparams.track_grad_norm, fast_dev_run=hparams.fast_dev_run, check_val_every_n_epoch=hparams.check_val_every_n_epoch, accumulate_grad_batches=hparams.accumulate_grad_batches, process_position=process_position, current_gpu_name=current_gpu, checkpoint_callback=checkpoint, early_stop_callback=early_stop, enable_early_stop=hparams.enable_early_stop, max_nb_epochs=hparams.max_nb_epochs, min_nb_epochs=hparams.min_nb_epochs, train_percent_check=hparams.train_percent_check, val_percent_check=hparams.val_percent_check, test_percent_check=hparams.test_percent_check, val_check_interval=hparams.val_check_interval, log_save_interval=hparams.log_save_interval, add_log_row_interval=hparams.add_log_row_interval, lr_scheduler_milestones=hparams.lr_scheduler_milestones ) # train model trainer.fit(model) def get_default_parser(strategy, root_dir): possible_model_names = list(AVAILABLE_MODELS.keys()) parser = HyperOptArgumentParser(strategy=strategy, add_help=False) add_default_args(parser, root_dir, possible_model_names, SEED) return parser def get_model_name(args): for i, arg in enumerate(args): if 'model_name' in arg: return args[i+1] def optimize_on_cluster(hyperparams): # enable cluster training cluster = SlurmCluster( hyperparam_optimizer=hyperparams, log_path=hyperparams.tt_save_path, test_tube_exp_name=hyperparams.tt_name ) # email for cluster coms cluster.notify_job_status(email='add_email_here', on_done=True, on_fail=True) # configure cluster cluster.per_experiment_nb_gpus = hyperparams.per_experiment_nb_gpus cluster.job_time = '48:00:00' cluster.gpu_type = '1080ti' cluster.memory_mb_per_node = 48000 # any modules for code to run in env cluster.add_command('source activate pytorch_lightning') # name of exp job_display_name = hyperparams.tt_name.split('_')[0] job_display_name = job_display_name[0:3] # run hopt print('submitting jobs...') cluster.optimize_parallel_cluster_gpu( main, nb_trials=hyperparams.nb_hopt_trials, job_name=job_display_name ) if __name__ == '__main__': model_name = get_model_name(sys.argv) # use default args root_dir = os.path.split(os.path.dirname(sys.modules['__main__'].__file__))[0] parent_parser = get_default_parser(strategy='random_search', root_dir=root_dir) # allow model to overwrite or extend args TRAINING_MODEL = AVAILABLE_MODELS[model_name] parser = TRAINING_MODEL.add_model_specific_args(parent_parser) parser.json_config('-c', '--config', default=root_dir + '/run_configs/local.json') hyperparams = parser.parse_args() # format GPU layout os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" gpu_ids = hyperparams.gpus.split(';') # RUN TRAINING if hyperparams.on_cluster: print('RUNNING ON SLURM CLUSTER') os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(gpu_ids) optimize_on_cluster(hyperparams) elif hyperparams.single_run_gpu: print(f'RUNNING 1 TRIAL ON GPU. gpu: {gpu_ids[0]}') os.environ["CUDA_VISIBLE_DEVICES"] = gpu_ids[0] main(hyperparams, None, None) elif hyperparams.local or hyperparams.single_run: os.environ["CUDA_VISIBLE_DEVICES"] = '0' print('RUNNING LOCALLY') main(hyperparams, None, None) else: print(f'RUNNING MULTI GPU. GPU ids: {gpu_ids}') hyperparams.optimize_parallel_gpu( main_local, gpu_ids=gpu_ids, nb_trials=hyperparams.nb_hopt_trials, nb_workers=len(gpu_ids) )