lightning/pytorch_lightning/callbacks/lr_logger.py

122 lines
4.6 KiB
Python
Raw Normal View History

r"""
Logging of learning rates
=========================
Log learning rate for lr schedulers during training
"""
from pytorch_lightning.callbacks.base import Callback
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities import rank_zero_warn
class LearningRateLogger(Callback):
r"""
Automatically logs learning rate for learning rate schedulers during training.
Example::
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import LearningRateLogger
>>> lr_logger = LearningRateLogger()
>>> trainer = Trainer(callbacks=[lr_logger])
Logging names are automatically determined based on optimizer class name.
In case of multiple optimizers of same type, they will be named `Adam`,
`Adam-1` etc. If a optimizer has multiple parameter groups they will
be named `Adam/pg1`, `Adam/pg2` etc. To control naming, pass in a
`name` keyword in the construction of the learning rate schdulers
Example::
def configure_optimizer(self):
optimizer = torch.optim.Adam(...)
lr_scheduler = {'scheduler': torch.optim.lr_schedulers.LambdaLR(optimizer, ...)
'name': 'my_logging_name'}
return [optimizer], [lr_scheduler]
"""
def __init__(self):
self.lrs = None
self.lr_sch_names = []
def on_train_start(self, trainer, pl_module):
""" Called before training, determines unique names for all lr
schedulers in the case of multiple of the same type or in
the case of multiple parameter groups
"""
if not trainer.logger:
raise MisconfigurationException(
'Cannot use LearningRateLogger callback with Trainer that has no logger.')
if not trainer.lr_schedulers:
rank_zero_warn(
'You are using LearningRateLogger callback with models that'
' have no learning rate schedulers. Please see documentation'
' for `configure_optimizers` method.', RuntimeWarning
)
# Find names for schedulers
names = self._find_names(trainer.lr_schedulers)
# Initialize for storing values
self.lrs = {name: [] for name in names}
def on_batch_start(self, trainer, pl_module):
latest_stat = self._extract_lr(trainer, 'step')
if trainer.logger and latest_stat:
trainer.logger.log_metrics(latest_stat, step=trainer.global_step)
def on_epoch_start(self, trainer, pl_module):
latest_stat = self._extract_lr(trainer, 'epoch')
if trainer.logger and latest_stat:
trainer.logger.log_metrics(latest_stat, step=trainer.global_step)
def _extract_lr(self, trainer, interval):
""" Extracts learning rates for lr schedulers and saves information
into dict structure. """
latest_stat = {}
for name, scheduler in zip(self.lr_sch_names, trainer.lr_schedulers):
if scheduler['interval'] == interval:
param_groups = scheduler['scheduler'].optimizer.param_groups
if len(param_groups) != 1:
for i, pg in enumerate(param_groups):
lr, key = pg['lr'], f'{name}/pg{i + 1}'
self.lrs[key].append(lr)
latest_stat[key] = lr
else:
self.lrs[name].append(param_groups[0]['lr'])
latest_stat[name] = param_groups[0]['lr']
return latest_stat
def _find_names(self, lr_schedulers):
# Create uniqe names in the case we have multiple of the same learning
# rate schduler + multiple parameter groups
names = []
for scheduler in lr_schedulers:
sch = scheduler['scheduler']
if 'name' in scheduler:
name = scheduler['name']
else:
opt_name = 'lr-' + sch.optimizer.__class__.__name__
i, name = 1, opt_name
# Multiple schduler of the same type
while True:
if name not in names:
break
i, name = i + 1, f'{opt_name}-{i}'
# Multiple param groups for the same schduler
param_groups = sch.optimizer.param_groups
if len(param_groups) != 1:
for i, pg in enumerate(param_groups):
temp = f'{name}/pg{i + 1}'
names.append(temp)
else:
names.append(name)
self.lr_sch_names.append(name)
return names