lightning/pytorch_lightning/callbacks/lr_logger.py

119 lines
4.5 KiB
Python
Raw Normal View History

r"""
Logging of learning rates
=========================
Log learning rate for lr schedulers during training
"""
from pytorch_lightning.callbacks.base import Callback
from pytorch_lightning.utilities.exceptions import MisconfigurationException
class LearningRateLogger(Callback):
r"""
Automatically logs learning rate for learning rate schedulers during training.
Example::
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import LearningRateLogger
>>> lr_logger = LearningRateLogger()
>>> trainer = Trainer(callbacks=[lr_logger])
Logging names are automatically determined based on optimizer class name.
In case of multiple optimizers of same type, they will be named `Adam`,
`Adam-1` etc. If a optimizer has multiple parameter groups they will
be named `Adam/pg1`, `Adam/pg2` etc. To control naming, pass in a
`name` keyword in the construction of the learning rate schdulers
Example::
def configure_optimizer(self):
optimizer = torch.optim.Adam(...)
lr_scheduler = {'scheduler': torch.optim.lr_schedulers.LambdaLR(optimizer, ...)
'name': 'my_logging_name'}
return [optimizer], [lr_scheduler]
"""
def __init__(self):
self.lrs = None
self.lr_sch_names = []
def on_train_start(self, trainer, pl_module):
""" Called before training, determines unique names for all lr
schedulers in the case of multiple of the same type or in
the case of multiple parameter groups
"""
if trainer.lr_schedulers == []:
raise MisconfigurationException(
'Cannot use LearningRateLogger callback with models that have no'
' learning rate schedulers. Please see documentation for'
' `configure_optimizers` method.')
if not trainer.logger:
raise MisconfigurationException(
'Cannot use LearningRateLogger callback with Trainer that has no logger.')
# Find names for schedulers
names = self._find_names(trainer.lr_schedulers)
# Initialize for storing values
self.lrs = dict.fromkeys(names, [])
def on_batch_start(self, trainer, pl_module):
latest_stat = self._extract_lr(trainer, 'step')
if trainer.logger and latest_stat:
trainer.logger.log_metrics(latest_stat, step=trainer.global_step)
def on_epoch_start(self, trainer, pl_module):
latest_stat = self._extract_lr(trainer, 'epoch')
if trainer.logger and latest_stat:
trainer.logger.log_metrics(latest_stat, step=trainer.global_step)
def _extract_lr(self, trainer, interval):
""" Extracts learning rates for lr schedulers and saves information
into dict structure. """
latest_stat = {}
for name, scheduler in zip(self.lr_sch_names, trainer.lr_schedulers):
if scheduler['interval'] == interval:
param_groups = scheduler['scheduler'].optimizer.param_groups
if len(param_groups) != 1:
for i, pg in enumerate(param_groups):
lr, key = pg['lr'], f'{name}/pg{i + 1}'
self.lrs[key].append(lr)
latest_stat[key] = lr
else:
self.lrs[name].append(param_groups[0]['lr'])
latest_stat[name] = param_groups[0]['lr']
return latest_stat
def _find_names(self, lr_schedulers):
# Create uniqe names in the case we have multiple of the same learning
# rate schduler + multiple parameter groups
names = []
for scheduler in lr_schedulers:
sch = scheduler['scheduler']
if 'name' in scheduler:
name = scheduler['name']
else:
opt_name = 'lr-' + sch.optimizer.__class__.__name__
i, name = 1, opt_name
# Multiple schduler of the same type
while True:
if name not in names:
break
i, name = i + 1, f'{opt_name}-{i}'
# Multiple param groups for the same schduler
param_groups = sch.optimizer.param_groups
if len(param_groups) != 1:
for i, pg in enumerate(param_groups):
temp = f'{name}/pg{i + 1}'
names.append(temp)
else:
names.append(name)
self.lr_sch_names.append(name)
return names