lightning/tests/accelerators/test_dp.py

206 lines
6.2 KiB
Python
Raw Normal View History

2020-10-13 11:18:07 +00:00
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import pytorch_lightning as pl
import tests.helpers.pipelines as tpipes
import tests.helpers.utils as tutils
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.core import memory
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.helpers import BoringModel, RandomDataset
from tests.helpers.datamodules import ClassifDataModule
from tests.helpers.runif import RunIf
from tests.helpers.simple_models import ClassificationModel
class CustomClassificationModelDP(ClassificationModel):
def _step(self, batch, batch_idx):
x, y = batch
logits = self(x)
return {'logits': logits, 'y': y}
def training_step(self, batch, batch_idx):
out = self._step(batch, batch_idx)
loss = F.cross_entropy(out['logits'], out['y'])
return loss
def validation_step(self, batch, batch_idx):
return self._step(batch, batch_idx)
def test_step(self, batch, batch_idx):
return self._step(batch, batch_idx)
def validation_step_end(self, outputs):
self.log('val_acc', self.valid_acc(outputs['logits'], outputs['y']))
def test_step_end(self, outputs):
self.log('test_acc', self.test_acc(outputs['logits'], outputs['y']))
@RunIf(min_gpus=2)
def test_multi_gpu_early_stop_dp(tmpdir):
"""Make sure DDP works. with early stopping"""
tutils.set_random_master_port()
dm = ClassifDataModule()
model = CustomClassificationModelDP()
trainer_options = dict(
default_root_dir=tmpdir,
callbacks=[EarlyStopping(monitor='val_acc')],
max_epochs=50,
limit_train_batches=10,
limit_val_batches=10,
gpus=[0, 1],
accelerator='dp',
)
tpipes.run_model_test(trainer_options, model, dm)
@RunIf(min_gpus=2)
def test_multi_gpu_model_dp(tmpdir):
tutils.set_random_master_port()
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=10,
limit_val_batches=10,
gpus=[0, 1],
accelerator='dp',
progress_bar_refresh_rate=0,
)
model = BoringModel()
tpipes.run_model_test(trainer_options, model)
# test memory helper functions
memory.get_memory_profile('min_max')
class ReductionTestModel(BoringModel):
def train_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=2)
def val_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=2)
def test_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=2)
def add_outputs(self, output, device):
output.update({
"reduce_int": torch.tensor(device.index, dtype=torch.int, device=device),
"reduce_float": torch.tensor(device.index, dtype=torch.float, device=device),
})
def training_step(self, batch, batch_idx):
output = super().training_step(batch, batch_idx)
self.add_outputs(output, batch.device)
return output
def validation_step(self, batch, batch_idx):
output = super().validation_step(batch, batch_idx)
self.add_outputs(output, batch.device)
return output
def test_step(self, batch, batch_idx):
output = super().test_step(batch, batch_idx)
self.add_outputs(output, batch.device)
return output
def training_epoch_end(self, outputs):
assert outputs[0]["loss"].shape == torch.Size([])
assert outputs[0]["reduce_int"].item() == 0 # mean([0, 1]) = 0
assert outputs[0]["reduce_float"].item() == 0.5 # mean([0., 1.]) = 0.5
def test_dp_raise_exception_with_batch_transfer_hooks(tmpdir, monkeypatch):
"""
Test that an exception is raised when overriding batch_transfer_hooks in DP model.
"""
monkeypatch.setattr("torch.cuda.device_count", lambda: 2)
class CustomModel(BoringModel):
def transfer_batch_to_device(self, batch, device):
batch = batch.to(device)
return batch
trainer_options = dict(
default_root_dir=tmpdir,
max_steps=7,
gpus=[0, 1],
accelerator='dp',
)
trainer = Trainer(**trainer_options)
model = CustomModel()
with pytest.raises(MisconfigurationException, match=r'Overriding `transfer_batch_to_device` is not .* in DP'):
trainer.fit(model)
class CustomModel(BoringModel):
def on_before_batch_transfer(self, batch, dataloader_idx):
batch += 1
return batch
trainer = Trainer(**trainer_options)
model = CustomModel()
with pytest.raises(MisconfigurationException, match=r'Overriding `on_before_batch_transfer` is not .* in DP'):
trainer.fit(model)
class CustomModel(BoringModel):
def on_after_batch_transfer(self, batch, dataloader_idx):
batch += 1
return batch
trainer = Trainer(**trainer_options)
model = CustomModel()
with pytest.raises(MisconfigurationException, match=r'Overriding `on_after_batch_transfer` is not .* in DP'):
trainer.fit(model)
@RunIf(min_gpus=2)
def test_dp_training_step_dict(tmpdir):
""" This test verifies that dp properly reduces dictionaries """
model = ReductionTestModel()
model.training_step_end = None
model.validation_step_end = None
model.test_step_end = None
trainer = pl.Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=1,
limit_val_batches=1,
limit_test_batches=1,
gpus=2,
accelerator='dp',
)
trainer.fit(model)