Covv1 (#4072)
* temporary drop metrics tests while speeding them up * cov * cov * docs
This commit is contained in:
parent
1dbc6ffbc1
commit
5b645d713e
|
@ -38,12 +38,18 @@ exclude_lines =
|
|||
rank_zero_warn
|
||||
# TODO: figure out how to get codecov to pick up the test results on these backends
|
||||
# The actual coverage for each is 90%+
|
||||
# *metrics (94%+) are temporarily removed from testing while tests speed up
|
||||
omit =
|
||||
pytorch_lightning/accelerators/ddp_*.py
|
||||
pytorch_lightning/accelerators/ddp2_*.py
|
||||
pytorch_lightning/accelerators/dp_*.py
|
||||
pytorch_lightning/accelerators/tpu_*.py
|
||||
pytorch_lightning/cluster_environments/*.py
|
||||
pytorch_lightning/overrides/data_parallel.py
|
||||
pytorch_lightning/metrics
|
||||
pytorch_lightning/utilities/xla_device_utils.py
|
||||
pytorch_lightning/utilities/distributed.py
|
||||
pytorch_lightning/tuner/auto_gpu_select.py
|
||||
|
||||
[flake8]
|
||||
# TODO: this should be 88 or 100 according PEP8
|
||||
|
|
|
@ -0,0 +1,85 @@
|
|||
import pytest
|
||||
import torch
|
||||
|
||||
import tests.base.develop_pipelines as tpipes
|
||||
import tests.base.develop_utils as tutils
|
||||
from pytorch_lightning.callbacks import EarlyStopping
|
||||
from pytorch_lightning.core import memory
|
||||
from tests.base import EvalModelTemplate
|
||||
import pytorch_lightning as pl
|
||||
|
||||
|
||||
PRETEND_N_OF_GPUS = 16
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
||||
def test_multi_gpu_early_stop_dp(tmpdir):
|
||||
"""Make sure DDP works. with early stopping"""
|
||||
tutils.set_random_master_port()
|
||||
|
||||
trainer_options = dict(
|
||||
default_root_dir=tmpdir,
|
||||
callbacks=[EarlyStopping()],
|
||||
max_epochs=50,
|
||||
limit_train_batches=10,
|
||||
limit_val_batches=10,
|
||||
gpus=[0, 1],
|
||||
distributed_backend='dp',
|
||||
)
|
||||
|
||||
model = EvalModelTemplate()
|
||||
tpipes.run_model_test(trainer_options, model)
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
||||
def test_multi_gpu_model_dp(tmpdir):
|
||||
tutils.set_random_master_port()
|
||||
|
||||
trainer_options = dict(
|
||||
default_root_dir=tmpdir,
|
||||
max_epochs=1,
|
||||
limit_train_batches=10,
|
||||
limit_val_batches=10,
|
||||
gpus=[0, 1],
|
||||
distributed_backend='dp',
|
||||
progress_bar_refresh_rate=0
|
||||
)
|
||||
|
||||
model = EvalModelTemplate()
|
||||
|
||||
tpipes.run_model_test(trainer_options, model)
|
||||
|
||||
# test memory helper functions
|
||||
memory.get_memory_profile('min_max')
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
||||
def test_dp_test(tmpdir):
|
||||
tutils.set_random_master_port()
|
||||
|
||||
import os
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
|
||||
|
||||
model = EvalModelTemplate()
|
||||
trainer = pl.Trainer(
|
||||
default_root_dir=tmpdir,
|
||||
max_epochs=2,
|
||||
limit_train_batches=10,
|
||||
limit_val_batches=10,
|
||||
gpus=[0, 1],
|
||||
distributed_backend='dp',
|
||||
)
|
||||
trainer.fit(model)
|
||||
assert 'ckpt' in trainer.checkpoint_callback.best_model_path
|
||||
results = trainer.test()
|
||||
assert 'test_acc' in results[0]
|
||||
|
||||
old_weights = model.c_d1.weight.clone().detach().cpu()
|
||||
|
||||
results = trainer.test(model)
|
||||
assert 'test_acc' in results[0]
|
||||
|
||||
# make sure weights didn't change
|
||||
new_weights = model.c_d1.weight.clone().detach().cpu()
|
||||
|
||||
assert torch.all(torch.eq(old_weights, new_weights))
|
|
@ -19,25 +19,6 @@ from pytorch_lightning.accelerators.gpu_accelerator import GPUAccelerator
|
|||
PRETEND_N_OF_GPUS = 16
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
||||
def test_multi_gpu_early_stop_dp(tmpdir):
|
||||
"""Make sure DDP works. with early stopping"""
|
||||
tutils.set_random_master_port()
|
||||
|
||||
trainer_options = dict(
|
||||
default_root_dir=tmpdir,
|
||||
callbacks=[EarlyStopping()],
|
||||
max_epochs=50,
|
||||
limit_train_batches=10,
|
||||
limit_val_batches=10,
|
||||
gpus=[0, 1],
|
||||
distributed_backend='dp',
|
||||
)
|
||||
|
||||
model = EvalModelTemplate()
|
||||
tpipes.run_model_test(trainer_options, model)
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
||||
def test_multi_gpu_none_backend(tmpdir):
|
||||
"""Make sure when using multiple GPUs the user can't use `distributed_backend = None`."""
|
||||
|
@ -56,28 +37,6 @@ def test_multi_gpu_none_backend(tmpdir):
|
|||
tpipes.run_model_test(trainer_options, model)
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
||||
def test_multi_gpu_model_dp(tmpdir):
|
||||
tutils.set_random_master_port()
|
||||
|
||||
trainer_options = dict(
|
||||
default_root_dir=tmpdir,
|
||||
max_epochs=1,
|
||||
limit_train_batches=10,
|
||||
limit_val_batches=10,
|
||||
gpus=[0, 1],
|
||||
distributed_backend='dp',
|
||||
progress_bar_refresh_rate=0
|
||||
)
|
||||
|
||||
model = EvalModelTemplate()
|
||||
|
||||
tpipes.run_model_test(trainer_options, model)
|
||||
|
||||
# test memory helper functions
|
||||
memory.get_memory_profile('min_max')
|
||||
|
||||
|
||||
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
|
||||
@pytest.mark.parametrize('gpus', [1, [0], [1]])
|
||||
def test_single_gpu_model(tmpdir, gpus):
|
||||
|
|
|
@ -34,38 +34,6 @@ def test_single_gpu_test(tmpdir):
|
|||
assert torch.all(torch.eq(old_weights, new_weights))
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
||||
def test_dp_test(tmpdir):
|
||||
tutils.set_random_master_port()
|
||||
|
||||
import os
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
|
||||
|
||||
model = EvalModelTemplate()
|
||||
trainer = pl.Trainer(
|
||||
default_root_dir=tmpdir,
|
||||
max_epochs=2,
|
||||
limit_train_batches=10,
|
||||
limit_val_batches=10,
|
||||
gpus=[0, 1],
|
||||
distributed_backend='dp',
|
||||
)
|
||||
trainer.fit(model)
|
||||
assert 'ckpt' in trainer.checkpoint_callback.best_model_path
|
||||
results = trainer.test()
|
||||
assert 'test_acc' in results[0]
|
||||
|
||||
old_weights = model.c_d1.weight.clone().detach().cpu()
|
||||
|
||||
results = trainer.test(model)
|
||||
assert 'test_acc' in results[0]
|
||||
|
||||
# make sure weights didn't change
|
||||
new_weights = model.c_d1.weight.clone().detach().cpu()
|
||||
|
||||
assert torch.all(torch.eq(old_weights, new_weights))
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
|
||||
def test_ddp_spawn_test(tmpdir):
|
||||
tutils.set_random_master_port()
|
||||
|
|
Loading…
Reference in New Issue