lightning/tests/base/model_train_steps.py

157 lines
5.5 KiB
Python
Raw Normal View History

2020-10-13 11:18:07 +00:00
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from abc import ABC
from collections import OrderedDict
import torch
class TrainingStepVariations(ABC):
"""
Houses all variations of training steps
"""
test_step_inf_loss = float('inf')
def training_step(self, batch, batch_idx, optimizer_idx=None):
"""Lightning calls this inside the training loop"""
ref: result 1/n (make monitor default to checkpoint_on to simplify re… (#3571) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * force crash when max_epochs < epochs in a checkpoint Co-authored-by: ananthsub <ananth.subramaniam@gmail.com>
2020-09-21 02:58:43 +00:00
self.training_step_called = True
# forward pass
x, y = batch
x = x.view(x.size(0), -1)
y_hat = self(x)
# calculate loss
loss_train = self.loss(y, y_hat)
log_train = loss_train
# alternate between tensors and scalars for "log" and "progress_bar"
if batch_idx % 2 == 0:
log_train = log_train.item()
output = OrderedDict(
{
'loss': loss_train,
'progress_bar': {'some_val': log_train * log_train},
'log': {'train_some_val': log_train * log_train},
}
)
return output
def training_step__inf_loss(self, batch, batch_idx, optimizer_idx=None):
output = self.training_step(batch, batch_idx, optimizer_idx)
if batch_idx == self.test_step_inf_loss:
if isinstance(output, dict):
output['loss'] *= torch.tensor(math.inf) # make loss infinite
else:
output /= 0
return output
Structured results (train loop only. val loop separate PR) (PR 2/5) (#2615) * r * r * r * patched optimizer closure with sr * patched optimizer closure with sr * patched optimizer closure with sr * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added train step structured result * added autoreduce for train step * added auto reduce on train * added auto reduce on train * added auto reduce on train * added auto reduce on train * added auto reduce on train * added auto reduce on train * added hooks * added hooks * added hooks * added hooks * added hooks * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * cache * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * Update pytorch_lightning/callbacks/early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/model_checkpoint.py * Update pytorch_lightning/core/step_result.py * finished tests for structured results on train epoch * finished tests for structured results on train epoch * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com> * Apply suggestions from code review Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com> * Apply suggestions from code review Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com> * simple * finished tests for structured results on train epoch * simple * simple * revert * finished tests for structured results on train epoch * finished tests for structured results on train epoch * Update tests/base/deterministic_model.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * finished tests for structured results on train epoch * docstring typos * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * finished tests for structured results on train epoch * Update pytorch_lightning/core/step_result.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Update pytorch_lightning/overrides/data_parallel.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com>
2020-07-20 23:00:20 +00:00
Add Support for multiple train loaders (#1959) * add support for wrong dtype in apply_func * apply loader resetting to possible collection of loaders * add combined loader iter class * integrate combined loader iter to training loop * fix imports * fix imports * finish supporters * add tests for supporters * add test for model with multiple loaders * fix trainer integration * fix instance check * Train loaders (#4032) * patch for issues discussed in #1959, encapsulating underlying datastructures returned from train_dataloader * update data_loading.py to it uses patch discussed in #1959 * rename class * Separate CombinedLoaderIterator into two classes, and update related tests. (#4606) * Fix the bugs after rebasing. * Add custom get_len for apply_to_collection * Refactor MultiIterator to be as CombinedLoaderIterator * To get the right num_training_batches. Call the wrapper for multi trainloader in data_loading.py, instead of training_loop.py * Reload _loader_iters when calling __iter__ * Don't transform DataLoader to CombinedLoaderIterator when it's along * Updates test_fit_multiple_train_loaders for testing num_training_batches * Seperate CombinedLoaderIterator into CombinedLoaderIterator and CombinedDataLoader. Add CombinedDataset for unified DataLoader format. * Initialize CombinedDataLoader before calculating num_training_batches. Also updating self._worker_check for multiple loaders * Update tests for supporters * Update tests for multiple trainloaders. Add tests about few_workers for multiple loaders. * Fix pep8 issues * Add tests for train_loader_patch.py * Add descriptions to multiple_trainloader_mode * Remove unused variables * Add docstrings and typing * Add more tests for better converage * Remove unused commented codes * Add sampler property * Remove extract_dataset * Update typing * pep8 * Update train_loader_patch.py * Apply suggestions from code review Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/trainer/supporters.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * reviewer comments * fix stupid import * add docs * add back line separator * fix line sep * pep8 * Apply suggestions from code review * fix * fix * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * Apply suggestions from code review Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> * flake8 Co-authored-by: Justus Schock <justusschock@justuss-mbp.fritz.box> Co-authored-by: Christofer Fransson <christofer_fransson@yahoo.com> Co-authored-by: YI-LIN SUNG <r06942076@ntu.edu.tw> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz>
2021-01-04 19:57:53 +00:00
def training_step_end_full_loop_result_obj_dp(self, result):
"""
Full loop flow train step (result obj + dp)
"""
result.minimize = result.minimize.mean()
result.checkpoint_on = result.checkpoint_on.mean()
result.train_step_metric = result.train_step_metric.mean()
result.log('train_step_end_metric', 1)
self.training_step_end_called = True
return result
def training_epoch_end_full_loop_result_obj_dp(self, result):
"""
Full loop flow train step (result obj + dp)
"""
result.log('train_epoch_end_metric', 1, on_epoch=True)
self.training_epoch_end_called = True
return result
def eval_step_end_full_loop_result_obj_dp(self, result):
"""
Full loop flow train step (result obj + dp)
"""
eval_name = 'validation' if not self.trainer.testing else 'test'
reduced = getattr(result, f'{eval_name}_step_metric_step').mean()
setattr(result, f'{eval_name}_step_metric_step', reduced)
reduced = getattr(result, f'{eval_name}_step_metric_epoch').mean()
setattr(result, f'{eval_name}_step_metric_epoch', reduced)
reduced = getattr(result, f'{eval_name}_step_metric').mean()
setattr(result, f'{eval_name}_step_metric', reduced)
result.checkpoint_on = result.checkpoint_on.mean()
result.early_stop_on = result.early_stop_on.mean()
result.log(f'{eval_name}_step_end_metric', torch.tensor(1).type_as(result.checkpoint_on))
setattr(self, f'{eval_name}_step_end_called', True)
return result
def eval_epoch_end_full_loop_result_obj_dp(self, result):
"""
Full loop flow train step (result obj + dp)
"""
eval_name = 'validation' if not self.trainer.testing else 'test'
result.log(f'{eval_name}_epoch_end_metric', torch.tensor(1).type_as(result.checkpoint_on), on_epoch=True)
result.checkpoint_on = result.checkpoint_on.mean()
result.early_stop_on = result.early_stop_on.mean()
setattr(self, f'{eval_name}_epoch_end_called', True)
# reduce the parametrized values
reduced = getattr(result, f'{eval_name}_step_metric_step').mean()
setattr(result, f'{eval_name}_step_metric_step', reduced)
reduced = getattr(result, f'{eval_name}_step_metric_epoch').mean()
setattr(result, f'{eval_name}_step_metric_epoch', reduced)
reduced = getattr(result, f'{eval_name}_step_end_metric').mean()
setattr(result, f'{eval_name}_step_end_metric', reduced)
reduced = getattr(result, f'{eval_name}_step_metric').mean()
setattr(result, f'{eval_name}_step_metric', reduced)
return result
def training_step__multiple_dataloaders(self, batch, batch_idx, optimizer_idx=None):
"""Training step for multiple train loaders"""
assert isinstance(batch, dict)
assert len(batch) == 2
assert 'a' in batch and 'b' in batch
# forward pass
x, y = batch['a']
x = x.view(x.size(0), -1)
y_hat = self(x)
# calculate loss
loss_val = self.loss(y, y_hat)
log_val = loss_val
# alternate between tensors and scalars for "log" and "progress_bar"
if batch_idx % 2 == 0:
log_val = log_val.item()
output = OrderedDict(
{
'loss': loss_val,
'progress_bar': {'some_val': log_val * log_val},
'log': {'train_some_val': log_val * log_val},
}
)
return output