# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from abc import ABC from collections import OrderedDict import torch class TrainingStepVariations(ABC): """ Houses all variations of training steps """ test_step_inf_loss = float('inf') def training_step(self, batch, batch_idx, optimizer_idx=None): """Lightning calls this inside the training loop""" self.training_step_called = True # forward pass x, y = batch x = x.view(x.size(0), -1) y_hat = self(x) # calculate loss loss_train = self.loss(y, y_hat) log_train = loss_train # alternate between tensors and scalars for "log" and "progress_bar" if batch_idx % 2 == 0: log_train = log_train.item() output = OrderedDict( { 'loss': loss_train, 'progress_bar': {'some_val': log_train * log_train}, 'log': {'train_some_val': log_train * log_train}, } ) return output def training_step__inf_loss(self, batch, batch_idx, optimizer_idx=None): output = self.training_step(batch, batch_idx, optimizer_idx) if batch_idx == self.test_step_inf_loss: if isinstance(output, dict): output['loss'] *= torch.tensor(math.inf) # make loss infinite else: output /= 0 return output def training_step_end_full_loop_result_obj_dp(self, result): """ Full loop flow train step (result obj + dp) """ result.minimize = result.minimize.mean() result.checkpoint_on = result.checkpoint_on.mean() result.train_step_metric = result.train_step_metric.mean() result.log('train_step_end_metric', 1) self.training_step_end_called = True return result def training_epoch_end_full_loop_result_obj_dp(self, result): """ Full loop flow train step (result obj + dp) """ result.log('train_epoch_end_metric', 1, on_epoch=True) self.training_epoch_end_called = True return result def eval_step_end_full_loop_result_obj_dp(self, result): """ Full loop flow train step (result obj + dp) """ eval_name = 'validation' if not self.trainer.testing else 'test' reduced = getattr(result, f'{eval_name}_step_metric_step').mean() setattr(result, f'{eval_name}_step_metric_step', reduced) reduced = getattr(result, f'{eval_name}_step_metric_epoch').mean() setattr(result, f'{eval_name}_step_metric_epoch', reduced) reduced = getattr(result, f'{eval_name}_step_metric').mean() setattr(result, f'{eval_name}_step_metric', reduced) result.checkpoint_on = result.checkpoint_on.mean() result.early_stop_on = result.early_stop_on.mean() result.log(f'{eval_name}_step_end_metric', torch.tensor(1).type_as(result.checkpoint_on)) setattr(self, f'{eval_name}_step_end_called', True) return result def eval_epoch_end_full_loop_result_obj_dp(self, result): """ Full loop flow train step (result obj + dp) """ eval_name = 'validation' if not self.trainer.testing else 'test' result.log(f'{eval_name}_epoch_end_metric', torch.tensor(1).type_as(result.checkpoint_on), on_epoch=True) result.checkpoint_on = result.checkpoint_on.mean() result.early_stop_on = result.early_stop_on.mean() setattr(self, f'{eval_name}_epoch_end_called', True) # reduce the parametrized values reduced = getattr(result, f'{eval_name}_step_metric_step').mean() setattr(result, f'{eval_name}_step_metric_step', reduced) reduced = getattr(result, f'{eval_name}_step_metric_epoch').mean() setattr(result, f'{eval_name}_step_metric_epoch', reduced) reduced = getattr(result, f'{eval_name}_step_end_metric').mean() setattr(result, f'{eval_name}_step_end_metric', reduced) reduced = getattr(result, f'{eval_name}_step_metric').mean() setattr(result, f'{eval_name}_step_metric', reduced) return result def training_step__multiple_dataloaders(self, batch, batch_idx, optimizer_idx=None): """Training step for multiple train loaders""" assert isinstance(batch, dict) assert len(batch) == 2 assert 'a' in batch and 'b' in batch # forward pass x, y = batch['a'] x = x.view(x.size(0), -1) y_hat = self(x) # calculate loss loss_val = self.loss(y, y_hat) log_val = loss_val # alternate between tensors and scalars for "log" and "progress_bar" if batch_idx % 2 == 0: log_val = log_val.item() output = OrderedDict( { 'loss': loss_val, 'progress_bar': {'some_val': log_val * log_val}, 'log': {'train_some_val': log_val * log_val}, } ) return output