lightning/examples/app_multi_node/train_pytorch_spawn.py

53 lines
1.5 KiB
Python
Raw Normal View History

import torch
from torch.nn.parallel.distributed import DistributedDataParallel
import lightning as L
from lightning.app.components import PyTorchSpawnMultiNode
class PyTorchDistributed(L.LightningWork):
def run(
self,
world_size: int,
node_rank: int,
global_rank: str,
local_rank: int,
):
# 1. Prepare the model
model = torch.nn.Sequential(
torch.nn.Linear(1, 1),
torch.nn.ReLU(),
torch.nn.Linear(1, 1),
)
# 2. Setup distributed training
device = torch.device(f"cuda:{local_rank}") if torch.cuda.is_available() else torch.device("cpu")
model = DistributedDataParallel(
model.to(device), device_ids=[local_rank] if torch.cuda.is_available() else None
)
# 3. Prepare loss and optimizer
criterion = torch.nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# 4. Train the model for 1000 steps.
for step in range(1000):
model.zero_grad()
x = torch.tensor([0.8]).to(device)
target = torch.tensor([1.0]).to(device)
output = model(x)
loss = criterion(output, target)
print(f"global_rank: {global_rank} step: {step} loss: {loss}")
loss.backward()
optimizer.step()
# Run over 2 nodes of 4 x V100
app = L.LightningApp(
PyTorchSpawnMultiNode(
PyTorchDistributed,
num_nodes=2,
cloud_compute=L.CloudCompute("gpu-fast-multi"), # 4 x V100
)
)