lightning/examples/app_multi_node/train_pytorch_spawn.py

47 lines
1.4 KiB
Python
Raw Normal View History

import torch
from torch.nn.parallel.distributed import DistributedDataParallel
import lightning as L
from lightning.app.components import PyTorchSpawnMultiNode
class PyTorchDistributed(L.LightningWork):
# Note: Only staticmethod are support for now with `PyTorchSpawnMultiNode`
@staticmethod
def run(
world_size: int,
node_rank: int,
global_rank: str,
local_rank: int,
):
# 1. Prepare distributed model
model = torch.nn.Linear(32, 2)
device = torch.device(f"cuda:{local_rank}") if torch.cuda.is_available() else torch.device("cpu")
device_ids = device if torch.cuda.is_available() else None
model = DistributedDataParallel(model, device_ids=device_ids).to(device)
# 2. Prepare loss and optimizer
criterion = torch.nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# 3. Train the model for 50 steps.
for step in range(50):
model.zero_grad()
x = torch.randn(64, 32).to(device)
output = model(x)
loss = criterion(output, torch.ones_like(output))
print(f"global_rank: {global_rank} step: {step} loss: {loss}")
loss.backward()
optimizer.step()
# Run over 2 nodes of 4 x V100
app = L.LightningApp(
PyTorchSpawnMultiNode(
PyTorchDistributed,
num_nodes=2,
cloud_compute=L.CloudCompute("gpu-fast-multi"), # 4 x V100
)
)