2019-08-06 20:37:58 +00:00
< div align = "center" >
2019-08-05 22:47:39 +00:00
![Logo ](./docs/source/_static/lightning_logo_small.png )
2019-03-31 19:32:35 +00:00
2019-08-05 20:02:48 +00:00
# PyTorch Lightning
**The PyTorch Keras for ML researchers. More control. Less boilerplate.**
[![PyPI Status ](https://badge.fury.io/py/pytorch-lightning.svg )](https://badge.fury.io/py/pytorch-lightning)
2019-08-18 23:17:25 +00:00
[![PyPI Status ](https://pepy.tech/badge/pytorch-lightning )](https://pepy.tech/project/pytorch-lightning)
2019-08-05 20:02:48 +00:00
[![Build Status ](https://travis-ci.org/williamFalcon/pytorch-lightning.svg?branch=master )](https://travis-ci.org/williamFalcon/pytorch-lightning)
2019-08-15 13:54:29 +00:00
[![Build status ](https://ci.appveyor.com/api/projects/status/rum89d7hq8l1kfye?svg=true )](https://ci.appveyor.com/project/Borda/pytorch-lightning)
2019-08-18 23:15:41 +00:00
[![Coverage ](https://github.com/williamFalcon/pytorch-lightning/blob/master/docs/source/_static/coverage.svg )](https://github.com/williamFalcon/pytorch-lightning/tree/master/tests#running-coverage)
2019-08-18 23:17:25 +00:00
[![CodeFactor ](https://www.codefactor.io/repository/github/borda/pytorch-lightning/badge )](https://www.codefactor.io/repository/github/borda/pytorch-lightning)
2019-08-18 23:15:09 +00:00
2019-08-18 23:17:25 +00:00
[![ReadTheDocs ](https://readthedocs.org/projects/pytorch-lightning/badge/?version=latest )](https://pytorch-lightning.readthedocs.io/en/latest)
2019-08-18 23:16:25 +00:00
[![Gitter ](https://badges.gitter.im/PyTorch-Lightning/community.svg )](https://gitter.im/PyTorch-Lightning/community?utm_source=badge& utm_medium=badge& utm_campaign=pr-badge)
2019-08-18 23:15:09 +00:00
[![license ](https://img.shields.io/badge/License-Apache%202.0-blue.svg )](https://github.com/williamFalcon/pytorch-lightning/blob/master/LICENSE)
2019-08-15 13:54:29 +00:00
<!--
removed until codecov badge isn't empy. likely a config error showing nothing on master.
[![codecov ](https://codecov.io/gh/Borda/pytorch-lightning/branch/master/graph/badge.svg )](https://codecov.io/gh/Borda/pytorch-lightning)
-->
2019-08-05 20:02:48 +00:00
2019-08-06 20:37:58 +00:00
< / div >
2019-08-05 20:02:48 +00:00
Simple installation from PyPI
2019-03-31 19:32:35 +00:00
```bash
2019-07-25 01:22:24 +00:00
pip install pytorch-lightning
2019-03-31 19:32:35 +00:00
```
2019-03-31 00:50:32 +00:00
2019-03-31 19:33:05 +00:00
## Docs
2019-06-26 23:18:41 +00:00
**[View the docs here](https://williamfalcon.github.io/pytorch-lightning/)**
2019-03-31 19:39:39 +00:00
## What is it?
2019-08-23 07:45:14 +00:00
Lightning is a very lightweight wrapper on PyTorch. This means you don't have to learn a new library. To use Lightning, simply refactor your research code into the [LightningModule ](https://github.com/williamFalcon/pytorch-lightning#how-do-i-do-use-it ) format and Lightning will automate the rest. Lightning guarantees tested, correct, modern best practices for the automated parts.
2019-03-31 20:50:32 +00:00
2019-08-23 20:10:24 +00:00
## Starting a new project?
2019-08-23 20:10:45 +00:00
[Use our seed-project aimed at reproducibility! ](https://github.com/williamFalcon/pytorch-lightning-conference-seed )
2019-06-26 23:47:31 +00:00
## Why do I want to use lightning?
2019-08-23 07:45:14 +00:00
Every research project starts the same, a model, a training loop, validation loop, etc. As your research advances, you're likely to need distributed training, 16-bit precision, checkpointing, gradient accumulation, etc.
2019-07-25 14:23:51 +00:00
2019-08-23 07:45:14 +00:00
Lightning sets up all the boilerplate state-of-the-art training for you so you can focus on the research.
2019-06-26 23:47:31 +00:00
2019-08-06 18:36:47 +00:00
---
2019-08-05 18:38:54 +00:00
## README Table of Contents
2019-08-05 16:29:19 +00:00
- [How do I use it ](https://github.com/williamFalcon/pytorch-lightning#how-do-i-do-use-it )
- [What lightning automates ](https://github.com/williamFalcon/pytorch-lightning#what-does-lightning-control-for-me )
- [Tensorboard integration ](https://github.com/williamFalcon/pytorch-lightning#tensorboard )
- [Lightning features ](https://github.com/williamFalcon/pytorch-lightning#lightning-automates-all-of-the-following-each-is-also-configurable )
- [Demos ](https://github.com/williamFalcon/pytorch-lightning#demo )
2019-08-05 16:32:01 +00:00
- [Tutorials ](https://github.com/williamFalcon/pytorch-lightning#tutorials )
2019-08-07 15:09:05 +00:00
- [Contributing ](https://github.com/williamFalcon/pytorch-lightning/blob/master/CONTRIBUTING.md )
2019-08-05 23:34:34 +00:00
- [Bleeding edge install ](https://github.com/williamFalcon/pytorch-lightning#bleeding-edge )
2019-08-18 23:05:13 +00:00
- [Lightning Design Principles ](https://github.com/williamFalcon/pytorch-lightning#lightning-design-principles )
- [Asking for help ](https://github.com/williamFalcon/pytorch-lightning#asking-for-help )
2019-08-05 23:34:34 +00:00
- [FAQ ](https://github.com/williamFalcon/pytorch-lightning#faq )
2019-08-05 16:29:19 +00:00
2019-08-06 18:36:47 +00:00
---
2019-07-25 16:33:53 +00:00
## How do I do use it?
2019-08-23 07:46:27 +00:00
Think about Lightning as refactoring your research code instead of using a new framework. The research code goes into a [LightningModule ]((https://williamfalcon.github.io/pytorch-lightning/LightningModule/RequiredTrainerInterface/ )) which you fit using a Trainer.
2019-08-23 07:45:14 +00:00
2019-08-23 07:46:27 +00:00
The LightningModule defines a *system* such as seq-2-seq, GAN, etc... It can ALSO define a simple classifier such as the example below.
2019-07-25 16:33:53 +00:00
2019-06-26 23:58:33 +00:00
To use lightning do 2 things:
2019-08-13 16:10:08 +00:00
1. [Define a LightningModule ](https://williamfalcon.github.io/pytorch-lightning/LightningModule/RequiredTrainerInterface/ )
2019-07-25 14:11:51 +00:00
```python
2019-07-27 18:26:08 +00:00
import os
2019-07-25 14:11:51 +00:00
import torch
2019-07-25 15:52:54 +00:00
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
2019-07-27 18:26:08 +00:00
import torchvision.transforms as transforms
2019-08-07 06:02:55 +00:00
import pytorch_lightning as pl
2019-07-25 14:11:51 +00:00
2019-08-13 16:10:08 +00:00
class CoolSystem(pl.LightningModule):
2019-07-25 14:11:51 +00:00
2019-07-27 18:26:08 +00:00
def __init__ (self):
2019-08-13 16:56:12 +00:00
super(CoolSystem, self).__init__()
2019-07-25 15:52:54 +00:00
# not the best model...
2019-07-25 16:11:49 +00:00
self.l1 = torch.nn.Linear(28 * 28, 10)
2019-07-25 14:11:51 +00:00
def forward(self, x):
2019-07-27 18:26:08 +00:00
return torch.relu(self.l1(x.view(x.size(0), -1)))
2019-07-25 16:11:49 +00:00
2019-07-25 14:11:51 +00:00
def training_step(self, batch, batch_nb):
2019-08-11 14:01:57 +00:00
# REQUIRED
2019-07-25 14:11:51 +00:00
x, y = batch
y_hat = self.forward(x)
2019-08-11 14:01:57 +00:00
return {'loss': F.cross_entropy(y_hat, y)}
2019-07-25 16:11:49 +00:00
2019-08-13 15:38:35 +00:00
def validation_step(self, batch, batch_nb):
2019-08-11 14:01:57 +00:00
# OPTIONAL
2019-07-25 14:11:51 +00:00
x, y = batch
y_hat = self.forward(x)
2019-08-13 10:42:25 +00:00
return {'val_loss': F.cross_entropy(y_hat, y)}
2019-07-25 16:11:49 +00:00
2019-07-25 15:58:06 +00:00
def validation_end(self, outputs):
2019-08-11 14:01:57 +00:00
# OPTIONAL
2019-07-27 18:26:08 +00:00
avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
return {'avg_val_loss': avg_loss}
2019-07-25 16:11:49 +00:00
2019-07-25 14:11:51 +00:00
def configure_optimizers(self):
2019-08-11 14:01:57 +00:00
# REQUIRED
2019-08-15 17:59:54 +00:00
# can return multiple optimizers and learning_rate schedulers
return torch.optim.Adam(self.parameters(), lr=0.02)
2019-07-25 16:11:49 +00:00
2019-08-07 06:02:55 +00:00
@pl .data_loader
2019-07-25 14:11:51 +00:00
def tng_dataloader(self):
2019-08-11 14:01:57 +00:00
# REQUIRED
2019-07-27 18:26:08 +00:00
return DataLoader(MNIST(os.getcwd(), train=True, download=True, transform=transforms.ToTensor()), batch_size=32)
2019-07-25 14:11:51 +00:00
2019-08-07 06:02:55 +00:00
@pl .data_loader
2019-07-25 14:11:51 +00:00
def val_dataloader(self):
2019-08-11 14:01:57 +00:00
# OPTIONAL
2019-07-27 18:26:08 +00:00
return DataLoader(MNIST(os.getcwd(), train=True, download=True, transform=transforms.ToTensor()), batch_size=32)
2019-07-25 16:11:49 +00:00
2019-08-07 06:02:55 +00:00
@pl .data_loader
2019-07-25 14:11:51 +00:00
def test_dataloader(self):
2019-08-11 14:01:57 +00:00
# OPTIONAL
2019-07-27 18:26:08 +00:00
return DataLoader(MNIST(os.getcwd(), train=True, download=True, transform=transforms.ToTensor()), batch_size=32)
2019-07-25 14:11:51 +00:00
```
2. Fit with a [trainer ](https://williamfalcon.github.io/pytorch-lightning/Trainer/ )
```python
from pytorch_lightning import Trainer
2019-08-13 16:10:08 +00:00
model = CoolSystem()
2019-08-08 15:03:12 +00:00
# most basic trainer, uses good defaults
trainer = Trainer()
trainer.fit(model)
```
Or with tensorboard logger and some options turned on such as multi-gpu, etc...
```python
from test_tube import Experiment
# PyTorch summarywriter with a few bells and whistles
2019-07-27 18:26:08 +00:00
exp = Experiment(save_dir=os.getcwd())
2019-07-27 18:28:44 +00:00
2019-07-27 18:33:48 +00:00
# train on cpu using only 10% of the data (for demo purposes)
2019-08-12 20:15:53 +00:00
# pass in experiment for automatic tensorboard logging.
2019-07-27 18:33:48 +00:00
trainer = Trainer(experiment=exp, max_nb_epochs=1, train_percent_check=0.1)
2019-07-25 14:11:51 +00:00
2019-07-27 18:28:44 +00:00
# train on 4 gpus
# trainer = Trainer(experiment=exp, max_nb_epochs=1, gpus=[0, 1, 2, 3])
# train on 32 gpus across 4 nodes (make sure to submit appropriate SLURM job)
# trainer = Trainer(experiment=exp, max_nb_epochs=1, gpus=[0, 1, 2, 3, 4, 5, 6, 7], nb_gpu_nodes=4)
2019-07-27 18:26:08 +00:00
# train (1 epoch only here for demo)
2019-07-25 14:11:51 +00:00
trainer.fit(model)
2019-07-27 18:26:08 +00:00
# view tensorflow logs
2019-08-05 22:47:39 +00:00
print('View tensorboard logs by running\ntensorboard --logdir %s' % os.getcwd())
2019-07-27 18:31:22 +00:00
print('and going to http://localhost:6006 on your browser')
2019-08-08 15:03:12 +00:00
```
2019-07-25 14:11:51 +00:00
2019-08-31 07:08:18 +00:00
When you're all done you can even run the test set separately.
```python
trainer.test()
```
2019-08-04 12:10:39 +00:00
## What does lightning control for me?
2019-08-04 12:31:08 +00:00
Everything in gray!
You define the blue parts using the LightningModule interface:
2019-08-05 20:02:48 +00:00
![Ouverview ](./docs/source/_static/overview_flat.jpg )
2019-06-29 22:08:57 +00:00
2019-08-24 01:24:18 +00:00
```python
2019-06-29 22:08:57 +00:00
# what to do in the training loop
def training_step(self, data_batch, batch_nb):
# what to do in the validation loop
def validation_step(self, data_batch, batch_nb):
# how to aggregate validation_step outputs
def validation_end(self, outputs):
# and your dataloaders
def tng_dataloader():
def val_dataloader():
def test_dataloader():
```
2019-06-26 23:44:41 +00:00
2019-06-29 22:06:30 +00:00
**Could be as complex as seq-2-seq + attention**
2019-06-27 18:44:51 +00:00
2019-06-26 23:44:41 +00:00
```python
# define what happens for training here
2019-06-27 00:00:53 +00:00
def training_step(self, data_batch, batch_nb):
x, y = data_batch
2019-06-27 18:43:10 +00:00
# define your own forward and loss calculation
2019-06-29 22:05:17 +00:00
hidden_states = self.encoder(x)
2019-08-07 15:16:02 +00:00
# even as complex as a seq-2-seq + attn model
2019-06-29 22:05:17 +00:00
# (this is just a toy, non-working example to illustrate)
start_token = '< SOS > '
last_hidden = torch.zeros(...)
loss = 0
for step in range(max_seq_len):
attn_context = self.attention_nn(hidden_states, start_token)
pred = self.decoder(start_token, attn_context, last_hidden)
last_hidden = pred
pred = self.predict_nn(pred)
loss += self.loss(last_hidden, y[step])
#toy example as well
loss = loss / max_seq_len
2019-06-27 00:00:53 +00:00
return {'loss': loss}
2019-06-26 23:44:41 +00:00
```
2019-06-27 18:44:51 +00:00
2019-06-29 22:06:30 +00:00
**Or as basic as CNN image classification**
2019-06-26 23:44:41 +00:00
```python
# define what happens for validation here
2019-06-27 18:43:10 +00:00
def validation_step(self, data_batch, batch_nb):
x, y = data_batch
2019-06-29 22:05:17 +00:00
# or as basic as a CNN classification
2019-06-27 00:00:53 +00:00
out = self.forward(x)
loss = my_loss(out, y)
return {'loss': loss}
2019-06-26 23:44:41 +00:00
```
2019-06-29 22:06:30 +00:00
**And you also decide how to collate the output of all validation steps**
2019-06-27 18:44:51 +00:00
```python
def validation_end(self, outputs):
"""
Called at the end of validation to aggregate outputs
:param outputs: list of individual outputs of each validation step
:return:
"""
val_loss_mean = 0
val_acc_mean = 0
for output in outputs:
val_loss_mean += output['val_loss']
val_acc_mean += output['val_acc']
val_loss_mean /= len(outputs)
val_acc_mean /= len(outputs)
tqdm_dic = {'val_loss': val_loss_mean.item(), 'val_acc': val_acc_mean.item()}
return tqdm_dic
```
2019-06-29 21:57:40 +00:00
2019-07-15 13:21:30 +00:00
## Tensorboard
Lightning is fully integrated with tensorboard.
2019-06-29 22:32:55 +00:00
2019-08-05 20:02:48 +00:00
![tensorboard-support ](./docs/source/_static/tf_loss.png )
2019-06-29 22:28:11 +00:00
2019-06-29 22:35:41 +00:00
Lightning also adds a text column with all the hyperparameters for this experiment.
2019-06-29 22:32:55 +00:00
2019-08-05 20:02:48 +00:00
![tensorboard-support ](./docs/source/_static/tf_tags.png )
2019-06-29 21:57:40 +00:00
Simply note the path you set for the Experiment
2019-08-24 01:24:18 +00:00
```python
2019-06-29 21:57:40 +00:00
from test_tube import Experiment
from pytorch-lightning import Trainer
exp = Experiment(save_dir='/some/path')
trainer = Trainer(experiment=exp)
...
```
2019-06-29 21:58:10 +00:00
And run tensorboard from that dir
2019-06-29 21:57:40 +00:00
```bash
tensorboard --logdir /some/path
```
2019-06-26 23:44:41 +00:00
2019-07-25 16:44:48 +00:00
## Lightning automates all of the following ([each is also configurable](https://williamfalcon.github.io/pytorch-lightning/Trainer/)):
2019-06-26 23:44:41 +00:00
2019-07-28 11:59:16 +00:00
2019-06-28 22:48:09 +00:00
###### Checkpointing
2019-06-26 23:44:41 +00:00
2019-06-28 22:48:09 +00:00
- [Model saving ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Checkpointing/#model-saving )
- [Model loading ](https://williamfalcon.github.io/pytorch-lightning/LightningModule/methods/#load-from-metrics )
2019-08-07 11:09:37 +00:00
- [Restoring training session ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Checkpointing/#restoring-training-session )
2019-06-26 23:44:41 +00:00
2019-06-28 22:49:18 +00:00
###### Computing cluster (SLURM)
2019-06-26 23:44:41 +00:00
2019-06-28 22:48:09 +00:00
- [Running grid search on a cluster ](https://williamfalcon.github.io/pytorch-lightning/Trainer/SLURM%20Managed%20Cluster#running-grid-search-on-a-cluster )
- [Walltime auto-resubmit ](https://williamfalcon.github.io/pytorch-lightning/Trainer/SLURM%20Managed%20Cluster#walltime-auto-resubmit )
2019-06-26 23:44:41 +00:00
2019-06-28 22:49:18 +00:00
###### Debugging
2019-06-26 23:44:41 +00:00
2019-06-28 18:44:57 +00:00
- [Fast dev run ](https://williamfalcon.github.io/pytorch-lightning/Trainer/debugging/#fast-dev-run )
- [Inspect gradient norms ](https://williamfalcon.github.io/pytorch-lightning/Trainer/debugging/#inspect-gradient-norms )
- [Log GPU usage ](https://williamfalcon.github.io/pytorch-lightning/Trainer/debugging/#Log-gpu-usage )
- [Make model overfit on subset of data ](https://williamfalcon.github.io/pytorch-lightning/Trainer/debugging/#make-model-overfit-on-subset-of-data )
- [Print the parameter count by layer ](https://williamfalcon.github.io/pytorch-lightning/Trainer/debugging/#print-the-parameter-count-by-layer )
2019-08-04 03:52:29 +00:00
- [Print which gradients are nan ](https://williamfalcon.github.io/pytorch-lightning/Trainer/debugging/#print-which-gradients-are-nan )
2019-08-07 17:23:47 +00:00
- [Print input and output size of every module in system ](https://williamfalcon.github.io/pytorch-lightning/LightningModule/properties/#example_input_array )
2019-06-26 23:44:41 +00:00
2019-06-28 22:49:18 +00:00
###### Distributed training
2019-03-31 19:39:39 +00:00
2019-06-28 18:45:49 +00:00
- [16-bit mixed precision ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Distributed%20training/#16-bit-mixed-precision )
- [Multi-GPU ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Distributed%20training/#Multi-GPU )
- [Multi-node ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Distributed%20training/#Multi-node )
- [Single GPU ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Distributed%20training/#single-gpu )
- [Self-balancing architecture ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Distributed%20training/#self-balancing-architecture )
2019-06-26 23:58:33 +00:00
2019-06-28 22:49:18 +00:00
###### Experiment Logging
2019-06-26 23:58:33 +00:00
2019-06-28 18:46:28 +00:00
- [Display metrics in progress bar ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Logging/#display-metrics-in-progress-bar )
- [Log metric row every k batches ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Logging/#log-metric-row-every-k-batches )
2019-06-28 22:48:09 +00:00
- [Process position ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Logging/#process-position )
2019-07-28 11:59:16 +00:00
- [Tensorboard support ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Logging/#tensorboard-support )
2019-06-28 18:46:28 +00:00
- [Save a snapshot of all hyperparameters ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Logging/#save-a-snapshot-of-all-hyperparameters )
- [Snapshot code for a training run ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Logging/#snapshot-code-for-a-training-run )
- [Write logs file to csv every k batches ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Logging/#write-logs-file-to-csv-every-k-batches )
2019-06-27 18:43:10 +00:00
2019-06-28 22:49:18 +00:00
###### Training loop
2019-06-27 18:43:10 +00:00
2019-06-28 18:48:19 +00:00
- [Accumulate gradients ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Training%20Loop/#accumulated-gradients )
- [Force training for min or max epochs ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Training%20Loop/#force-training-for-min-or-max-epochs )
- [Force disable early stop ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Training%20Loop/#force-disable-early-stop )
2019-06-28 22:48:09 +00:00
- [Gradient Clipping ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Training%20Loop/#gradient-clipping )
2019-07-28 11:59:16 +00:00
- [Hooks ](https://williamfalcon.github.io/pytorch-lightning/Trainer/hooks/ )
2019-07-28 14:00:53 +00:00
- [Learning rate scheduling ](https://williamfalcon.github.io/pytorch-lightning/LightningModule/RequiredTrainerInterface/#configure_optimizers )
- [Use multiple optimizers (like GANs) ](https://williamfalcon.github.io/pytorch-lightning/LightningModule/RequiredTrainerInterface/#configure_optimizers )
2019-06-28 18:48:19 +00:00
- [Set how much of the training set to check (1-100%) ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Training%20Loop/#set-how-much-of-the-training-set-to-check )
2019-08-13 15:57:02 +00:00
- [Step optimizers at arbitrary intervals ](https://williamfalcon.github.io/pytorch-lightning/Trainer/hooks/#optimizer_step )
2019-06-27 18:43:10 +00:00
2019-07-28 12:04:28 +00:00
###### Validation loop
2019-06-27 18:43:10 +00:00
2019-06-28 18:48:51 +00:00
- [Check validation every n epochs ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Validation%20loop/#check-validation-every-n-epochs )
2019-07-28 11:59:16 +00:00
- [Hooks ](https://williamfalcon.github.io/pytorch-lightning/Trainer/hooks/ )
2019-06-28 18:48:51 +00:00
- [Set how much of the validation set to check ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Validation%20loop/#set-how-much-of-the-validation-set-to-check )
- [Set how much of the test set to check ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Validation%20loop/#set-how-much-of-the-test-set-to-check )
- [Set validation check frequency within 1 training epoch ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Validation%20loop/#set-validation-check-frequency-within-1-training-epoch )
- [Set the number of validation sanity steps ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Validation%20loop/#set-the-number-of-validation-sanity-steps )
2019-04-03 16:40:03 +00:00
2019-08-31 07:18:16 +00:00
###### Testing loop
- [Run test set ](https://williamfalcon.github.io/pytorch-lightning/Trainer/Testing%20loop/ )
2019-03-31 01:47:51 +00:00
2019-06-27 00:02:51 +00:00
## Demo
2019-06-25 22:40:34 +00:00
```bash
# install lightning
pip install pytorch-lightning
# clone lightning for the demo
git clone https://github.com/williamFalcon/pytorch-lightning.git
2019-08-05 18:35:50 +00:00
cd pytorch-lightning
cd examples/new_project_templates/
2019-06-25 22:40:34 +00:00
2019-07-25 16:46:11 +00:00
# all of the following demos use the SAME model to show no modification needs to be made to your code
2019-06-25 22:40:34 +00:00
2019-07-25 16:30:18 +00:00
# train on cpu
python single_cpu_template.py
# train on multiple-gpus
python single_gpu_node_template.py --gpus "0,1"
2019-07-25 16:30:59 +00:00
# train on 32 gpus on a cluster (run on a SLURM managed cluster)
2019-07-25 16:30:18 +00:00
python multi_node_cluster_template.py --nb_gpu_nodes 4 --gpus '0,1,2,3,4,5,6,7'
2019-06-25 22:40:34 +00:00
```
2019-08-05 16:32:01 +00:00
## Tutorials
- [Basic Lightning use ](https://towardsdatascience.com/supercharge-your-ai-research-with-pytorch-lightning-337948a99eec )
- [9 key speed features in Pytorch-Lightning ](https://towardsdatascience.com/9-tips-for-training-lightning-fast-neural-networks-in-pytorch-8e63a502f565 )
2019-08-05 23:34:34 +00:00
- [SLURM, multi-node training with Lightning ](https://towardsdatascience.com/trivial-multi-node-training-with-pytorch-lightning-ff75dfb809bd )
2019-08-18 23:05:13 +00:00
---
## Asking for help
2019-08-19 11:20:10 +00:00
Welcome to the Lightning community!
If you have any questions, feel free to:
2019-08-19 11:22:02 +00:00
1. [read the docs ](https://williamfalcon.github.io/pytorch-lightning/ ).
2. [Search through the issues ](https://github.com/williamFalcon/pytorch-lightning/issues?utf8=%E2%9C%93&q=my++question ).
3. [Ask on stackoverflow ](https://stackoverflow.com/questions/ask?guided=false ) with the tag pytorch-lightning.
2019-08-19 11:20:10 +00:00
If no one replies to you quickly enough, feel free to post the stackoverflow link to our Gitter chat!
To chat with the rest of us visit our [gitter channel ](https://gitter.im/PyTorch-Lightning/community?utm_source=share-link&utm_medium=link&utm_campaign=share-link )!
2019-08-18 23:05:13 +00:00
2019-08-06 18:38:38 +00:00
---
2019-08-05 23:34:34 +00:00
## FAQ
2019-08-16 01:21:26 +00:00
**How do I use Lightning for rapid research?**
[Here's a walk-through ](https://williamfalcon.github.io/pytorch-lightning/ )
2019-08-05 23:34:34 +00:00
**Why was Lightning created?**
Lightning has 3 goals in mind:
1. Maximal flexibility while abstracting out the common boilerplate across research projects.
2. Reproducibility. If all projects use the LightningModule template, it will be much much easier to understand what's going on and where to look! It will also mean every implementation follows a standard format.
3. Democratizing PyTorch power user features. Distributed training? 16-bit? know you need them but don't want to take the time to implement? All good... these come built into Lightning.
**How does Lightning compare with Ignite and fast.ai?**
[Here's a thorough comparison ](https://medium.com/@_willfalcon/pytorch-lightning-vs-pytorch-ignite-vs-fast-ai-61dc7480ad8a ).
**Is this another library I have to learn?**
Nope! We use pure Pytorch everywhere and don't add unecessary abstractions!
**Are there plans to support Python 2?**
2019-08-07 15:07:08 +00:00
Nope.
2019-08-03 12:21:25 +00:00
2019-08-08 16:43:14 +00:00
**Are there plans to support virtualenv?**
Nope. Please use anaconda or miniconda.
2019-08-08 18:27:47 +00:00
**Which PyTorch versions do you support?**
2019-08-14 11:21:45 +00:00
##### PyTorch 1.1.0
```bash
# install pytorch 1.1.0 using the official instructions
# install test-tube 0.6.7.6 which supports 1.1.0
pip install test-tube==0.6.7.6
# install latest Lightning version without upgrading deps
2019-08-14 11:19:58 +00:00
pip install -U --no-deps pytorch-lightning
```
##### PyTorch 1.2.0
Install via pip as normal
2019-08-08 18:27:47 +00:00
2019-07-25 23:55:22 +00:00
## Bleeding edge
If you can't wait for the next release, install the most up to date code with:
```bash
pip install git+https://github.com/williamFalcon/pytorch-lightning.git@master --upgrade
2019-07-27 18:26:08 +00:00
```