updated docs
This commit is contained in:
parent
9b99a02061
commit
e182559c83
21
README.md
21
README.md
|
@ -49,32 +49,33 @@ from torchvision.datasets import MNIST
|
|||
class CoolModel(ptl.LightningModule):
|
||||
|
||||
def __init(self):
|
||||
super(CoolModel, self).__init__()
|
||||
# not the best model...
|
||||
self.l1 = torch.nn.Linear(28*28, 10)
|
||||
|
||||
self.l1 = torch.nn.Linear(28 * 28, 10)
|
||||
|
||||
def forward(self, x):
|
||||
return torch.relu(self.l1(x))
|
||||
|
||||
|
||||
def my_loss(self, y_hat, y):
|
||||
return F.cross_entropy(y_hat, y)
|
||||
|
||||
|
||||
def training_step(self, batch, batch_nb):
|
||||
x, y = batch
|
||||
y_hat = self.forward(x)
|
||||
return {'tng_loss': self.my_loss(y_hat, y)}
|
||||
|
||||
|
||||
def validation_step(self, batch, batch_nb):
|
||||
x, y = batch
|
||||
y_hat = self.forward(x)
|
||||
return {'val_loss': self.my_loss(y_hat, y)}
|
||||
|
||||
|
||||
def validation_end(self, outputs):
|
||||
avg_loss = torch.stack([x for x in outputs['val_loss']]).mean()
|
||||
return avg_loss
|
||||
|
||||
|
||||
def configure_optimizers(self):
|
||||
return [torch.optim.Adam(self.parameters(), lr=0.02)]
|
||||
|
||||
|
||||
@ptl.data_loader
|
||||
def tng_dataloader(self):
|
||||
return DataLoader(MNIST('path/to/save', train=True), batch_size=32)
|
||||
|
@ -82,10 +83,10 @@ class CoolModel(ptl.LightningModule):
|
|||
@ptl.data_loader
|
||||
def val_dataloader(self):
|
||||
return DataLoader(MNIST('path/to/save', train=False), batch_size=32)
|
||||
|
||||
|
||||
@ptl.data_loader
|
||||
def test_dataloader(self):
|
||||
return DataLoader(MNIST('path/to/save', train=False), batch_size=32)
|
||||
return DataLoader(MNIST('path/to/save', train=False), batch_size=32)
|
||||
```
|
||||
|
||||
2. Fit with a [trainer](https://williamfalcon.github.io/pytorch-lightning/Trainer/)
|
||||
|
|
|
@ -38,32 +38,33 @@ from torchvision.datasets import MNIST
|
|||
class CoolModel(ptl.LightningModule):
|
||||
|
||||
def __init(self):
|
||||
super(CoolModel, self).__init__()
|
||||
# not the best model...
|
||||
self.l1 = torch.nn.Linear(28*28, 10)
|
||||
|
||||
self.l1 = torch.nn.Linear(28 * 28, 10)
|
||||
|
||||
def forward(self, x):
|
||||
return torch.relu(self.l1(x))
|
||||
|
||||
|
||||
def my_loss(self, y_hat, y):
|
||||
return F.cross_entropy(y_hat, y)
|
||||
|
||||
|
||||
def training_step(self, batch, batch_nb):
|
||||
x, y = batch
|
||||
y_hat = self.forward(x)
|
||||
return {'tng_loss': self.my_loss(y_hat, y)}
|
||||
|
||||
|
||||
def validation_step(self, batch, batch_nb):
|
||||
x, y = batch
|
||||
y_hat = self.forward(x)
|
||||
return {'val_loss': self.my_loss(y_hat, y)}
|
||||
|
||||
|
||||
def validation_end(self, outputs):
|
||||
avg_loss = torch.stack([x for x in outputs['val_loss']]).mean()
|
||||
return avg_loss
|
||||
|
||||
|
||||
def configure_optimizers(self):
|
||||
return [torch.optim.Adam(self.parameters(), lr=0.02)]
|
||||
|
||||
|
||||
@ptl.data_loader
|
||||
def tng_dataloader(self):
|
||||
return DataLoader(MNIST('path/to/save', train=True), batch_size=32)
|
||||
|
@ -71,10 +72,10 @@ class CoolModel(ptl.LightningModule):
|
|||
@ptl.data_loader
|
||||
def val_dataloader(self):
|
||||
return DataLoader(MNIST('path/to/save', train=False), batch_size=32)
|
||||
|
||||
|
||||
@ptl.data_loader
|
||||
def test_dataloader(self):
|
||||
return DataLoader(MNIST('path/to/save', train=False), batch_size=32)
|
||||
return DataLoader(MNIST('path/to/save', train=False), batch_size=32)
|
||||
```
|
||||
|
||||
---
|
||||
|
|
Loading…
Reference in New Issue