lightning/tests/helpers/pipelines.py

111 lines
4.2 KiB
Python
Raw Normal View History

2020-10-13 11:18:07 +00:00
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from pytorch_lightning import LightningDataModule, LightningModule, Trainer
from pytorch_lightning.metrics.functional import accuracy
from pytorch_lightning.utilities import DistributedType
from tests.helpers import BoringModel
from tests.helpers.utils import get_default_logger, load_model_from_checkpoint, reset_seed
def run_model_test_without_loggers(
trainer_options: dict, model: LightningModule, data: LightningDataModule = None, min_acc: float = 0.50
):
reset_seed()
# fit model
trainer = Trainer(**trainer_options)
trainer.fit(model, datamodule=data)
# correct result and ok accuracy
assert trainer.state.finished, f"Training failed with {trainer.state}"
model2 = load_model_from_checkpoint(trainer.logger, trainer.checkpoint_callback.best_model_path, type(model))
# test new model accuracy
test_loaders = model2.test_dataloader() if not data else data.test_dataloader()
if not isinstance(test_loaders, list):
test_loaders = [test_loaders]
if not isinstance(model2, BoringModel):
for dataloader in test_loaders:
run_prediction_eval_model_template(model2, dataloader, min_acc=min_acc)
def run_model_test(
trainer_options,
model: LightningModule,
data: LightningDataModule = None,
on_gpu: bool = True,
version=None,
with_hpc: bool = True,
min_acc: float = 0.25
):
reset_seed()
save_dir = trainer_options['default_root_dir']
# logger file to get meta
logger = get_default_logger(save_dir, version=version)
trainer_options.update(logger=logger)
trainer = Trainer(**trainer_options)
initial_values = torch.tensor([torch.sum(torch.abs(x)) for x in model.parameters()])
trainer.fit(model, datamodule=data)
post_train_values = torch.tensor([torch.sum(torch.abs(x)) for x in model.parameters()])
assert trainer.state.finished, f"Training failed with {trainer.state}"
# Check that the model is actually changed post-training
test_cpu and test_gpu EvalModelTemplate deprecation (#4820) * test_cpu refactoring - BoringModel and checkpoints; test_gpu refactoring - BoringModelboring_model refactoring - validation, testing; Fix - run_prediction as dispatcher for testing BoringModel * Removed EvalModelTemplate import from test_cpu and test_gpu * Reverting unintended changes * Issues with checkpointing * Fixed tests for logging and checkpointing * Fix for dispatcher * test_cpu refactoring - BoringModel and checkpoints; test_gpu refactoring - BoringModelboring_model refactoring - validation, testing; Fix - run_prediction as dispatcher for testing BoringModel * Removed EvalModelTemplate import from test_cpu and test_gpu * Reverting unintended changes * Issues with checkpointing * Fixed tests for logging and checkpointing * Fix for dispatcher * Fixed acc check for stocasticity of seeds * Fixed according to @borda suggestions * Hparams for boring_model * Deprecated RuntimeParamChagneModelAssing (functionality is tested in RuntimeParamChangeModelSaving) * Reduced boring_model parameters to just in and out features, test_cpu modelsinherit BoringModel to specify additional parameters (e.g., optimizer) * Fix PEP8 * Update tests/base/develop_pipelines.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update tests/base/boring_model.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update tests/base/develop_pipelines.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update tests/models/test_cpu.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update tests/models/test_cpu.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Merged test_early_stopping with all_features; added TODO for self.log * Fixed test_all_features trainer options * Ready for review! * Update tests/models/test_cpu.py Thank you! :) Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update tests/models/test_cpu.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update tests/models/test_cpu.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update tests/models/test_cpu.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update tests/models/test_cpu.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * added optimizer_name, lr, and batch_size as hparams for save_hparameters() * Fixes for reducing PR size * Reverse test_hparams (removed DEPRECATED test for hparams direct assignment) * Changes for in_features * Fixed hparams * Fixed parameters for boring_model * Update tests/models/test_cpu.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update tests/models/test_cpu.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update tests/models/test_cpu.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * fix for pep8 * Fixed run_predction and TODO * fix min acc for darwin/windows without pl_opt * eval as DEFAULT run_prediction strategy * Updated val_dataloader for running_test_no_val Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
2021-01-07 10:50:08 +00:00
change_ratio = torch.norm(initial_values - post_train_values)
assert change_ratio > 0.1, f"the model is changed of {change_ratio}"
# test model loading
test_cpu and test_gpu EvalModelTemplate deprecation (#4820) * test_cpu refactoring - BoringModel and checkpoints; test_gpu refactoring - BoringModelboring_model refactoring - validation, testing; Fix - run_prediction as dispatcher for testing BoringModel * Removed EvalModelTemplate import from test_cpu and test_gpu * Reverting unintended changes * Issues with checkpointing * Fixed tests for logging and checkpointing * Fix for dispatcher * test_cpu refactoring - BoringModel and checkpoints; test_gpu refactoring - BoringModelboring_model refactoring - validation, testing; Fix - run_prediction as dispatcher for testing BoringModel * Removed EvalModelTemplate import from test_cpu and test_gpu * Reverting unintended changes * Issues with checkpointing * Fixed tests for logging and checkpointing * Fix for dispatcher * Fixed acc check for stocasticity of seeds * Fixed according to @borda suggestions * Hparams for boring_model * Deprecated RuntimeParamChagneModelAssing (functionality is tested in RuntimeParamChangeModelSaving) * Reduced boring_model parameters to just in and out features, test_cpu modelsinherit BoringModel to specify additional parameters (e.g., optimizer) * Fix PEP8 * Update tests/base/develop_pipelines.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update tests/base/boring_model.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update tests/base/develop_pipelines.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update tests/models/test_cpu.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update tests/models/test_cpu.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Merged test_early_stopping with all_features; added TODO for self.log * Fixed test_all_features trainer options * Ready for review! * Update tests/models/test_cpu.py Thank you! :) Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update tests/models/test_cpu.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update tests/models/test_cpu.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update tests/models/test_cpu.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * Update tests/models/test_cpu.py Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> * added optimizer_name, lr, and batch_size as hparams for save_hparameters() * Fixes for reducing PR size * Reverse test_hparams (removed DEPRECATED test for hparams direct assignment) * Changes for in_features * Fixed hparams * Fixed parameters for boring_model * Update tests/models/test_cpu.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update tests/models/test_cpu.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * Update tests/models/test_cpu.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * fix for pep8 * Fixed run_predction and TODO * fix min acc for darwin/windows without pl_opt * eval as DEFAULT run_prediction strategy * Updated val_dataloader for running_test_no_val Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
2021-01-07 10:50:08 +00:00
pretrained_model = load_model_from_checkpoint(logger, trainer.checkpoint_callback.best_model_path, type(model))
# test new model accuracy
test_loaders = model.test_dataloader() if not data else data.test_dataloader()
if not isinstance(test_loaders, list):
test_loaders = [test_loaders]
if not isinstance(model, BoringModel):
for dataloader in test_loaders:
run_prediction_eval_model_template(model, dataloader, min_acc=min_acc)
if with_hpc:
if trainer._distrib_type in (DistributedType.DDP, DistributedType.DDP_SPAWN, DistributedType.DDP2):
# on hpc this would work fine... but need to hack it for the purpose of the test
PoC: Accelerator refactor (#5743) * restoring the result from subprocess * fix queue.get() order for results * add missing "block_backward_sync" context manager * add missing "block_backward_sync" context manager * fix sync_batchnorm * fix supported gpu-ids for tuple * fix clip gradients and inf recursion * accelerator selection: added cluster_environment plugin * fix torchelastic test * fix reduce early stopping decision for DDP * fix tests: callbacks, conversion to lightning optimizer * fix lightning optimizer does not pickle * fix setting benchmark and deterministic option * fix slurm amp test * fix prepare_data test and determine node_rank * fix retrieving last path when testing * remove obsolete plugin argument * fix test: test_trainer_config * fix torchscript tests * fix trainer.model access * move properties * fix test_transfer_batch_hook * fix auto_select_gpus * fix omegaconf test * fix test that needs to simulate slurm ddp * add horovod plugin * fix test with named arguments * clean up whitespace * fix datamodules test * remove old accelerators * fix naming * move old plugins * move to plugins * create precision subpackage * create training_type subpackage * fix all new import errors * fix wrong arguments order passed to test * fix LR finder * Added sharded training type and amp plugin * Move clip grad to precision plugin * Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically * Fix import issue, attempting to fix tests * Fix initial test * Reflect hook logic from master, should wrap model after move to device * Optional state consolidation, since master has optimizers not wrapped * change attribute for instance test * reset optimizers optimizers are not used in main process, so state would be wrong. * legacy * imports in accel * legacy2 * trainer imports * fix import errors after rebase * move hook to new setup location * provide unwrapping logic * fix trainer callback system * added ddp2 implementation * fix imports .legacy * move plugins * restore legacy * drop test.py from root * add tpu accelerator and plugins * fixes * fix lightning optimizer merge * reset bugreportmodel * unwrapping * step routing forward * model access * unwrap * opt * integrate distrib_type * sync changes * sync * fixes * add forgotten generators * add missing logic * update * import * missed imports * import fixes * isort * mv f * changelog * format * move helper to parallel plugin * d * add world size * clean up * duplicate * activate ddp_sharded and tpu * set nvidia flags * remove unused colab var * use_tpu <-> on_tpu attrs * make some ddp_cpu and clusterplugin tests pass * Ref/accelerator connector (#5742) * final cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * connector cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * trainer cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * accelerator cleanup + missing logic in accelerator connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add missing changes to callbacks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * reflect accelerator changes to lightning module Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * clean cluster envs Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * cleanup plugins Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add broadcasting Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * yapf * remove plugin connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * plugins * manual optimization * update optimizer routing * add rank to torchelastic * fix memory mixed precision * setstate on trainer for pickling in ddp spawn * add predict method * add back commented accelerator code * adapt test for sync_batch_norm to new plugin * fix deprecated tests * fix ddp cpu choice when no num_processes are given * yapf format * skip a memory test that cannot pass anymore * fix pickle error in spawn plugin * x * avoid * x * fix cyclic import in docs build * add support for sharded * update typing * add sharded and sharded_spawn to distributed types * make unwrap model default * refactor LightningShardedDataParallel similar to LightningDistributedDataParallel * update sharded spawn to reflect changes * update sharded to reflect changes * Merge 1.1.5 changes * fix merge * fix merge * yapf isort * fix merge * yapf isort * fix indentation in test * copy over reinit scheduler implementation from dev1.2 * fix apex tracking calls with dev_debugger * reduce diff to dev1.2, clean up * fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu * sort plugin tests legacy/new * fix error handling for amp on cpu * fix merge fix merge fix merge * [Feat] Resolve manual_backward (#5837) * resolve manual_backward * resolve flake8 * update * resolve for ddp_spawn * resolve flake8 * resolve flake8 * resolve flake8 Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * fix tests/accelerator tests on cpu * [BugFix] Resolve manual optimization (#5852) * resolve manual_optimization * update * update Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856) * resovle a bug * Accelerator refactor sharded rpc (#5854) * rpc branch * merge * update handling of rpc * make devices etc. Optional in RPC * set devices etc. later if necessary * remove devices from sequential * make devices optional in rpc * fix import * uncomment everything * fix cluster selection Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * resolve bug * fix assert in rpc test * resolve a test * fix docs compilation * accelerator refactor - fix for sharded parity test (#5866) * fix memory issue with ddp_spawn * x x x x x x x x x * x * Remove DDP2 as this does not apply * Add missing pre optimizer hook to ensure lambda closure is called * fix apex docstring * [accelerator][BugFix] Resolve some test for 1 gpu (#5863) * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * update * resolve flake8 * update * update * update * update * update * all_gather * update * make plugins work, add misconfig for RPC * update * update * remove breaking test * resolve some tests * resolve flake8 * revert to ddp_spawn Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de> * yapf isort * resolve flake8 * fix apex doctests * fix apex doctests 2 * resolve docs * update drone * clean env * update * update * update * update * merge * Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881) * Fix RPC related tests, clean out old API, update for new accelerator API * Move tests out of legacy folder, update paths and names * Update test_remove_1-4.py * Expose properties for tpu cores/gpus/num_gpus * Add root GPU property * Move properties to properties.py * move tests that were previously in drone * Fix root GPU property (#5908) * Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator * Add missing tests back * fix best model path transfer when no checkpoint callback available * Fix setup hook order [wip] (#5858) * Call trainer setup hook before accelerator setup * Add test case * add new test * typo * fix callback order in test Co-authored-by: tchaton <thomas@grid.ai> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * rename ddp sequential -> rpc sequential for special test * revert * fix stupid merge problem * Use property in connector for sampler (#5913) * merge the import conflicts * fix spawning of processes in slurm * [wip] Fix some bugs for TPU [skip ci] (#5878) * fixed for single tpu * fixed spawn * fixed spawn * update * update * wip * resolve bugs * resolve bug * update on comment * removed decorator * resolve comments * set to 4 * update * update * need cleaning * update * update * update * resolve flake8 * resolve bugs * exclude broadcast * resolve bugs * change test * update * update * skip if meet fails * properly raise trace * update * add catch * wrap test * resolve typo * update * typo Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> * resolve some tests * update * fix imports * update * resolve flake8 * update azure pipeline * skip a sharded test on cpu that requires a gpu * resolve tpus * resolve bug * resolve flake8 * update * updat utils * revert permission change on files * suggestions from carlos Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting changes * remove incomplete comment * Update pytorch_lightning/accelerators/__init__.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting change * add types * warn 1.7 ddp manual backward only if ddp kwarg unset * yapf + isort * pep8 unused imports * fix cyclic import in docs * Apply suggestions from code review * typer in accelerator.py * typo * Apply suggestions from code review * formatting * update on comments * update typo * Update pytorch_lightning/trainer/properties.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * update * suggestion from code review * suggestion from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
trainer.optimizers, trainer.lr_schedulers, trainer.optimizer_frequencies = \
trainer.init_optimizers(pretrained_model)
# test HPC saving
trainer.checkpoint_connector.hpc_save(save_dir, logger)
# test HPC loading
checkpoint_path = trainer.checkpoint_connector.get_max_ckpt_path_from_folder(save_dir)
trainer.checkpoint_connector.restore(checkpoint_path)
@torch.no_grad()
def run_prediction_eval_model_template(trained_model, dataloader, min_acc=0.50):
# run prediction on 1 batch
trained_model.cpu()
trained_model.eval()
batch = next(iter(dataloader))
x, y = batch
x = x.flatten(1)
y_hat = trained_model(x)
acc = accuracy(y_hat.cpu(), y.cpu(), top_k=2).item()
assert acc >= min_acc, f"This model is expected to get > {min_acc} in test set (it got {acc})"