2020-10-13 11:18:07 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
2020-06-27 01:38:25 +00:00
|
|
|
import torch
|
|
|
|
|
2021-02-23 22:08:46 +00:00
|
|
|
from pytorch_lightning import LightningDataModule, LightningModule, Trainer
|
|
|
|
from pytorch_lightning.metrics.functional import accuracy
|
2021-01-12 10:22:37 +00:00
|
|
|
from pytorch_lightning.utilities import DistributedType
|
2021-02-09 10:10:52 +00:00
|
|
|
from tests.helpers import BoringModel
|
2021-02-08 10:52:02 +00:00
|
|
|
from tests.helpers.utils import get_default_logger, load_model_from_checkpoint, reset_seed
|
2020-06-27 01:38:25 +00:00
|
|
|
|
|
|
|
|
2021-02-23 22:08:46 +00:00
|
|
|
def run_model_test_without_loggers(
|
|
|
|
trainer_options: dict, model: LightningModule, data: LightningDataModule = None, min_acc: float = 0.50
|
|
|
|
):
|
2020-06-27 01:38:25 +00:00
|
|
|
reset_seed()
|
|
|
|
|
|
|
|
# fit model
|
|
|
|
trainer = Trainer(**trainer_options)
|
2021-02-23 22:08:46 +00:00
|
|
|
trainer.fit(model, datamodule=data)
|
2020-06-27 01:38:25 +00:00
|
|
|
|
|
|
|
# correct result and ok accuracy
|
2021-05-04 10:50:56 +00:00
|
|
|
assert trainer.state.finished, f"Training failed with {trainer.state}"
|
2020-06-27 01:38:25 +00:00
|
|
|
|
2021-02-23 22:08:46 +00:00
|
|
|
model2 = load_model_from_checkpoint(trainer.logger, trainer.checkpoint_callback.best_model_path, type(model))
|
2020-06-27 01:38:25 +00:00
|
|
|
|
|
|
|
# test new model accuracy
|
2021-02-23 22:08:46 +00:00
|
|
|
test_loaders = model2.test_dataloader() if not data else data.test_dataloader()
|
2020-06-27 01:38:25 +00:00
|
|
|
if not isinstance(test_loaders, list):
|
|
|
|
test_loaders = [test_loaders]
|
|
|
|
|
2021-02-23 22:08:46 +00:00
|
|
|
if not isinstance(model2, BoringModel):
|
|
|
|
for dataloader in test_loaders:
|
|
|
|
run_prediction_eval_model_template(model2, dataloader, min_acc=min_acc)
|
2020-06-27 01:38:25 +00:00
|
|
|
|
|
|
|
|
2021-02-06 13:22:10 +00:00
|
|
|
def run_model_test(
|
2021-02-09 17:25:57 +00:00
|
|
|
trainer_options,
|
2021-02-23 22:08:46 +00:00
|
|
|
model: LightningModule,
|
2021-02-09 17:25:57 +00:00
|
|
|
data: LightningDataModule = None,
|
|
|
|
on_gpu: bool = True,
|
|
|
|
version=None,
|
|
|
|
with_hpc: bool = True,
|
|
|
|
min_acc: float = 0.25
|
2021-02-06 13:22:10 +00:00
|
|
|
):
|
2020-06-27 01:38:25 +00:00
|
|
|
reset_seed()
|
|
|
|
save_dir = trainer_options['default_root_dir']
|
|
|
|
|
|
|
|
# logger file to get meta
|
|
|
|
logger = get_default_logger(save_dir, version=version)
|
|
|
|
trainer_options.update(logger=logger)
|
|
|
|
trainer = Trainer(**trainer_options)
|
2020-09-29 13:38:09 +00:00
|
|
|
initial_values = torch.tensor([torch.sum(torch.abs(x)) for x in model.parameters()])
|
2021-02-09 17:25:57 +00:00
|
|
|
trainer.fit(model, datamodule=data)
|
2020-09-29 13:38:09 +00:00
|
|
|
post_train_values = torch.tensor([torch.sum(torch.abs(x)) for x in model.parameters()])
|
2020-06-27 01:38:25 +00:00
|
|
|
|
2021-05-04 10:50:56 +00:00
|
|
|
assert trainer.state.finished, f"Training failed with {trainer.state}"
|
2020-09-29 13:38:09 +00:00
|
|
|
# Check that the model is actually changed post-training
|
2021-01-07 10:50:08 +00:00
|
|
|
change_ratio = torch.norm(initial_values - post_train_values)
|
|
|
|
assert change_ratio > 0.1, f"the model is changed of {change_ratio}"
|
2020-06-27 01:38:25 +00:00
|
|
|
|
|
|
|
# test model loading
|
2021-01-07 10:50:08 +00:00
|
|
|
pretrained_model = load_model_from_checkpoint(logger, trainer.checkpoint_callback.best_model_path, type(model))
|
2020-06-27 01:38:25 +00:00
|
|
|
|
|
|
|
# test new model accuracy
|
2021-02-09 17:25:57 +00:00
|
|
|
test_loaders = model.test_dataloader() if not data else data.test_dataloader()
|
2020-06-27 01:38:25 +00:00
|
|
|
if not isinstance(test_loaders, list):
|
|
|
|
test_loaders = [test_loaders]
|
|
|
|
|
2021-02-23 22:08:46 +00:00
|
|
|
if not isinstance(model, BoringModel):
|
|
|
|
for dataloader in test_loaders:
|
|
|
|
run_prediction_eval_model_template(model, dataloader, min_acc=min_acc)
|
2020-06-27 01:38:25 +00:00
|
|
|
|
|
|
|
if with_hpc:
|
2021-01-12 10:22:37 +00:00
|
|
|
if trainer._distrib_type in (DistributedType.DDP, DistributedType.DDP_SPAWN, DistributedType.DDP2):
|
2020-06-27 01:38:25 +00:00
|
|
|
# on hpc this would work fine... but need to hack it for the purpose of the test
|
PoC: Accelerator refactor (#5743)
* restoring the result from subprocess
* fix queue.get() order for results
* add missing "block_backward_sync" context manager
* add missing "block_backward_sync" context manager
* fix sync_batchnorm
* fix supported gpu-ids for tuple
* fix clip gradients and inf recursion
* accelerator selection: added cluster_environment plugin
* fix torchelastic test
* fix reduce early stopping decision for DDP
* fix tests: callbacks, conversion to lightning optimizer
* fix lightning optimizer does not pickle
* fix setting benchmark and deterministic option
* fix slurm amp test
* fix prepare_data test and determine node_rank
* fix retrieving last path when testing
* remove obsolete plugin argument
* fix test: test_trainer_config
* fix torchscript tests
* fix trainer.model access
* move properties
* fix test_transfer_batch_hook
* fix auto_select_gpus
* fix omegaconf test
* fix test that needs to simulate slurm ddp
* add horovod plugin
* fix test with named arguments
* clean up whitespace
* fix datamodules test
* remove old accelerators
* fix naming
* move old plugins
* move to plugins
* create precision subpackage
* create training_type subpackage
* fix all new import errors
* fix wrong arguments order passed to test
* fix LR finder
* Added sharded training type and amp plugin
* Move clip grad to precision plugin
* Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically
* Fix import issue, attempting to fix tests
* Fix initial test
* Reflect hook logic from master, should wrap model after move to device
* Optional state consolidation, since master has optimizers not wrapped
* change attribute for instance test
* reset optimizers
optimizers are not used in main process, so state would be wrong.
* legacy
* imports in accel
* legacy2
* trainer imports
* fix import errors after rebase
* move hook to new setup location
* provide unwrapping logic
* fix trainer callback system
* added ddp2 implementation
* fix imports .legacy
* move plugins
* restore legacy
* drop test.py from root
* add tpu accelerator and plugins
* fixes
* fix lightning optimizer merge
* reset bugreportmodel
* unwrapping
* step routing forward
* model access
* unwrap
* opt
* integrate distrib_type
* sync changes
* sync
* fixes
* add forgotten generators
* add missing logic
* update
* import
* missed imports
* import fixes
* isort
* mv f
* changelog
* format
* move helper to parallel plugin
* d
* add world size
* clean up
* duplicate
* activate ddp_sharded and tpu
* set nvidia flags
* remove unused colab var
* use_tpu <-> on_tpu attrs
* make some ddp_cpu and clusterplugin tests pass
* Ref/accelerator connector (#5742)
* final cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* connector cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* trainer cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* accelerator cleanup + missing logic in accelerator connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add missing changes to callbacks
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* reflect accelerator changes to lightning module
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* clean cluster envs
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* cleanup plugins
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add broadcasting
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* yapf
* remove plugin connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* plugins
* manual optimization
* update optimizer routing
* add rank to torchelastic
* fix memory mixed precision
* setstate on trainer for pickling in ddp spawn
* add predict method
* add back commented accelerator code
* adapt test for sync_batch_norm to new plugin
* fix deprecated tests
* fix ddp cpu choice when no num_processes are given
* yapf format
* skip a memory test that cannot pass anymore
* fix pickle error in spawn plugin
* x
* avoid
* x
* fix cyclic import in docs build
* add support for sharded
* update typing
* add sharded and sharded_spawn to distributed types
* make unwrap model default
* refactor LightningShardedDataParallel similar to LightningDistributedDataParallel
* update sharded spawn to reflect changes
* update sharded to reflect changes
* Merge 1.1.5 changes
* fix merge
* fix merge
* yapf isort
* fix merge
* yapf isort
* fix indentation in test
* copy over reinit scheduler implementation from dev1.2
* fix apex tracking calls with dev_debugger
* reduce diff to dev1.2, clean up
* fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu
* sort plugin tests legacy/new
* fix error handling for amp on cpu
* fix merge
fix merge
fix merge
* [Feat] Resolve manual_backward (#5837)
* resolve manual_backward
* resolve flake8
* update
* resolve for ddp_spawn
* resolve flake8
* resolve flake8
* resolve flake8
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* fix tests/accelerator tests on cpu
* [BugFix] Resolve manual optimization (#5852)
* resolve manual_optimization
* update
* update
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856)
* resovle a bug
* Accelerator refactor sharded rpc (#5854)
* rpc branch
* merge
* update handling of rpc
* make devices etc. Optional in RPC
* set devices etc. later if necessary
* remove devices from sequential
* make devices optional in rpc
* fix import
* uncomment everything
* fix cluster selection
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* resolve bug
* fix assert in rpc test
* resolve a test
* fix docs compilation
* accelerator refactor - fix for sharded parity test (#5866)
* fix memory issue with ddp_spawn
* x
x
x
x
x
x
x
x
x
* x
* Remove DDP2 as this does not apply
* Add missing pre optimizer hook to ensure lambda closure is called
* fix apex docstring
* [accelerator][BugFix] Resolve some test for 1 gpu (#5863)
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* update
* resolve flake8
* update
* update
* update
* update
* update
* all_gather
* update
* make plugins work, add misconfig for RPC
* update
* update
* remove breaking test
* resolve some tests
* resolve flake8
* revert to ddp_spawn
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de>
* yapf isort
* resolve flake8
* fix apex doctests
* fix apex doctests 2
* resolve docs
* update drone
* clean env
* update
* update
* update
* update
* merge
* Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881)
* Fix RPC related tests, clean out old API, update for new accelerator API
* Move tests out of legacy folder, update paths and names
* Update test_remove_1-4.py
* Expose properties for tpu cores/gpus/num_gpus
* Add root GPU property
* Move properties to properties.py
* move tests that were previously in drone
* Fix root GPU property (#5908)
* Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator
* Add missing tests back
* fix best model path transfer when no checkpoint callback available
* Fix setup hook order [wip] (#5858)
* Call trainer setup hook before accelerator setup
* Add test case
* add new test
* typo
* fix callback order in test
Co-authored-by: tchaton <thomas@grid.ai>
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* rename ddp sequential -> rpc sequential for special test
* revert
* fix stupid merge problem
* Use property in connector for sampler (#5913)
* merge the import conflicts
* fix spawning of processes in slurm
* [wip] Fix some bugs for TPU [skip ci] (#5878)
* fixed for single tpu
* fixed spawn
* fixed spawn
* update
* update
* wip
* resolve bugs
* resolve bug
* update on comment
* removed decorator
* resolve comments
* set to 4
* update
* update
* need cleaning
* update
* update
* update
* resolve flake8
* resolve bugs
* exclude broadcast
* resolve bugs
* change test
* update
* update
* skip if meet fails
* properly raise trace
* update
* add catch
* wrap test
* resolve typo
* update
* typo
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
* resolve some tests
* update
* fix imports
* update
* resolve flake8
* update azure pipeline
* skip a sharded test on cpu that requires a gpu
* resolve tpus
* resolve bug
* resolve flake8
* update
* updat utils
* revert permission change on files
* suggestions from carlos
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting changes
* remove incomplete comment
* Update pytorch_lightning/accelerators/__init__.py
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting change
* add types
* warn 1.7 ddp manual backward only if ddp kwarg unset
* yapf + isort
* pep8 unused imports
* fix cyclic import in docs
* Apply suggestions from code review
* typer in accelerator.py
* typo
* Apply suggestions from code review
* formatting
* update on comments
* update typo
* Update pytorch_lightning/trainer/properties.py
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* update
* suggestion from code review
* suggestion from code review
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
Co-authored-by: SeanNaren <sean@grid.ai>
Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz>
Co-authored-by: chaton <thomas@grid.ai>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
|
|
|
trainer.optimizers, trainer.lr_schedulers, trainer.optimizer_frequencies = \
|
|
|
|
trainer.init_optimizers(pretrained_model)
|
2020-06-27 01:38:25 +00:00
|
|
|
|
2020-12-13 16:13:50 +00:00
|
|
|
# test HPC saving
|
2020-09-12 12:42:27 +00:00
|
|
|
trainer.checkpoint_connector.hpc_save(save_dir, logger)
|
2020-12-13 16:13:50 +00:00
|
|
|
# test HPC loading
|
|
|
|
checkpoint_path = trainer.checkpoint_connector.get_max_ckpt_path_from_folder(save_dir)
|
|
|
|
trainer.checkpoint_connector.hpc_load(checkpoint_path, on_gpu=on_gpu)
|
2020-06-27 01:38:25 +00:00
|
|
|
|
|
|
|
|
2021-02-23 22:08:46 +00:00
|
|
|
@torch.no_grad()
|
|
|
|
def run_prediction_eval_model_template(trained_model, dataloader, min_acc=0.50):
|
2020-06-27 01:38:25 +00:00
|
|
|
# run prediction on 1 batch
|
2021-02-23 22:08:46 +00:00
|
|
|
trained_model.cpu()
|
|
|
|
trained_model.eval()
|
|
|
|
|
2020-07-07 18:54:07 +00:00
|
|
|
batch = next(iter(dataloader))
|
2020-06-27 01:38:25 +00:00
|
|
|
x, y = batch
|
2021-02-23 22:08:46 +00:00
|
|
|
x = x.flatten(1)
|
2020-06-27 01:38:25 +00:00
|
|
|
|
2021-02-23 22:08:46 +00:00
|
|
|
y_hat = trained_model(x)
|
|
|
|
acc = accuracy(y_hat.cpu(), y.cpu(), top_k=2).item()
|
2020-06-27 01:38:25 +00:00
|
|
|
|
|
|
|
assert acc >= min_acc, f"This model is expected to get > {min_acc} in test set (it got {acc})"
|