lightning/tests/metrics/regression/test_psnr.py

134 lines
4.7 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import namedtuple
from functools import partial
import numpy as np
import pytest
import torch
from skimage.metrics import peak_signal_noise_ratio
from pytorch_lightning.metrics.functional import psnr
from pytorch_lightning.metrics.regression import PSNR
from tests.metrics.utils import BATCH_SIZE, MetricTester, NUM_BATCHES
torch.manual_seed(42)
Input = namedtuple('Input', ["preds", "target"])
_input_size = (NUM_BATCHES, BATCH_SIZE, 32, 32)
_inputs = [
Input(
preds=torch.randint(n_cls_pred, _input_size, dtype=torch.float),
target=torch.randint(n_cls_target, _input_size, dtype=torch.float),
2021-02-06 16:41:40 +00:00
) for n_cls_pred, n_cls_target in [(10, 10), (5, 10), (10, 5)]
]
def _to_sk_peak_signal_noise_ratio_inputs(value, dim):
value = value.numpy()
batches = value[None] if value.ndim == len(_input_size) - 1 else value
if dim is None:
return [batches]
num_dims = np.size(dim)
if not num_dims:
return batches
inputs = []
for batch in batches:
batch = np.moveaxis(batch, dim, np.arange(-num_dims, 0))
psnr_input_shape = batch.shape[-num_dims:]
inputs.extend(batch.reshape(-1, *psnr_input_shape))
return inputs
def _sk_psnr(preds, target, data_range, reduction, dim):
sk_preds_lists = _to_sk_peak_signal_noise_ratio_inputs(preds, dim=dim)
sk_target_lists = _to_sk_peak_signal_noise_ratio_inputs(target, dim=dim)
np_reduce_map = {"elementwise_mean": np.mean, "none": np.array, "sum": np.sum}
return np_reduce_map[reduction]([
peak_signal_noise_ratio(sk_target, sk_preds, data_range=data_range)
for sk_target, sk_preds in zip(sk_target_lists, sk_preds_lists)
])
def _base_e_sk_psnr(preds, target, data_range, reduction, dim):
return _sk_psnr(preds, target, data_range, reduction, dim) * np.log(10)
@pytest.mark.parametrize(
"preds, target, data_range, reduction, dim",
[
(_inputs[0].preds, _inputs[0].target, 10, "elementwise_mean", None),
(_inputs[1].preds, _inputs[1].target, 10, "elementwise_mean", None),
(_inputs[2].preds, _inputs[2].target, 5, "elementwise_mean", None),
(_inputs[2].preds, _inputs[2].target, 5, "elementwise_mean", 1),
(_inputs[2].preds, _inputs[2].target, 5, "elementwise_mean", (1, 2)),
(_inputs[2].preds, _inputs[2].target, 5, "sum", (1, 2)),
],
)
@pytest.mark.parametrize(
"base, sk_metric",
[
(10.0, _sk_psnr),
(2.718281828459045, _base_e_sk_psnr),
],
)
class TestPSNR(MetricTester):
2021-02-06 16:41:40 +00:00
@pytest.mark.parametrize("ddp", [True, False])
@pytest.mark.parametrize("dist_sync_on_step", [True, False])
def test_psnr(self, preds, target, data_range, base, reduction, dim, sk_metric, ddp, dist_sync_on_step):
_args = {"data_range": data_range, "base": base, "reduction": reduction, "dim": dim}
self.run_class_metric_test(
ddp,
preds,
target,
PSNR,
partial(sk_metric, data_range=data_range, reduction=reduction, dim=dim),
metric_args=_args,
dist_sync_on_step=dist_sync_on_step,
)
def test_psnr_functional(self, preds, target, sk_metric, data_range, base, reduction, dim):
_args = {"data_range": data_range, "base": base, "reduction": reduction, "dim": dim}
self.run_functional_metric_test(
preds,
target,
psnr,
partial(sk_metric, data_range=data_range, reduction=reduction, dim=dim),
metric_args=_args,
)
@pytest.mark.parametrize("reduction", ["none", "sum"])
def test_reduction_for_dim_none(reduction):
match = f"The `reduction={reduction}` will not have any effect when `dim` is None."
with pytest.warns(UserWarning, match=match):
PSNR(reduction=reduction, dim=None)
with pytest.warns(UserWarning, match=match):
psnr(_inputs[0].preds, _inputs[0].target, reduction=reduction, dim=None)
def test_missing_data_range():
with pytest.raises(ValueError):
PSNR(data_range=None, dim=0)
with pytest.raises(ValueError):
psnr(_inputs[0].preds, _inputs[0].target, data_range=None, dim=0)